This Review presents the state of knowledge of the thermophysical properties of water in all its phases and the reference formulations that provide standardized, recommended values of these properties for science and industry. The main focus is the standard formulations adopted by the International Association for the Properties of Water and Steam (IAPWS), but some properties are covered for which IAPWS has not yet adopted recommendations. It is emphasized that, despite many advances over the last 100 years, there is room for further improvement, and current weaknesses and opportunities for advancing knowledge are discussed. Particular attention is given to the formulation for thermodynamic properties of fluid water known as IAPWS-95, which is planned to be replaced in the coming years. Additional topics include properties of heavy water and seawater and the growing ability of molecular modeling to provide properties at conditions where experimental measurements are difficult or inaccurate.

1.
L. S.
Marks
and
H. N.
Davis
,
Tables and Diagrams of the Thermal Properties of Saturated and Superheated Steam
(
Longmans Green & Co.
,
New York
,
1909
).
2.
H. L.
Callendar
,
The Enlarged Callendar Steam Tables
(
Edward Arnold and Co.
,
London
,
1924
).
3.
R.
Mollier
,
Neue Tabellen und Diagramme für Wasserdampf
(
Springer
,
Berlin
,
1906
).
4.
Anonymous
, “
Progress in steam research
,”
Mech. Eng.
47
,
103
108
(
1925
).
5.
Anonymous
, “
Conference on present state of knowledge of properties of steam
,”
Mech. Eng.
43
,
553
557
(
1921
).
6.
H. L.
Callendar
, “
Recent experiments on the properties of steam at high pressures. Lecture I
,”
J. R. Soc. Arts
75
,
245
258
(
1927
).
7.
J. H.
Keenan
and
F. G.
Keyes
,
Thermodynamic Properties of Steam Including Data for the Liquid and Solid Phases
(
John Wiley & Sons
,
New York
,
1936
).
8.
G. S.
Callendar
and
A. G.
Egerton
,
The 1939 Callendar Steam Tables
, 2nd ed. (
Edward Arnold
,
London
,
1944
).
9.
W.
Koch
and
E.
Schmidt
,
VDI-Wasserdampftafeln
, 3rd ed. (
Springer-Verlag
,
Berlin
,
1952
).
10.
The Japan Society of Mechanical Engineers
,
Revised Steam Tables and Diagrams of the J.S.M.E.
(
JSME
,
Tokyo
,
1950
).
11.
M. P.
Vukalovich
,
Thermodynamic Properties of Water and Steam
, 6th ed. (
State Publishing House of Scientific-Technical Literature
,
Moscow
,
1958
).
12.
F. G.
Keyes
and
J. H.
Keenan
, “
The present status of steam properties
,”
Mech. Eng.
77
,
127
132
(
1955
).
13.
Bureau International des Poids et Mesures
,
The International System of Units (SI)
, 9th ed. (
BIPM
,
Paris
,
2019
).
14.
M.
Stock
,
R.
Davis
,
E.
de Mirandés
, and
M. J. T.
Milton
, “
The revision of the SI—The result of three decades of progress in metrology
,”
Metrologia
56
,
022001
(
2019
).
15.
A.
Thompson
and
B. N.
Taylor
, Guide for the use of the International System of Units (SI), NIST Special Publication 811,
2008
, https://www.nist.gov/pml/special-publication-811.
16.
A. H.
Harvey
, “
What the thermophysical property community should know about temperature scales
,”
Int. J. Thermophys.
42
,
165
(
2021
).
17.
H.
Preston-Thomas
, “
The international temperature scale of 1990 (ITS-90)
,”
Metrologia
27
,
3
10
(
1990
).
18.
J.
Fischer
,
M.
de Podesta
,
K. D.
Hill
,
M.
Moldover
,
L.
Pitre
,
R.
Rusby
,
P.
Steur
,
O.
Tamura
,
R.
White
, and
L.
Wolber
, “
Present estimates of the differences between thermodynamic temperatures and the ITS-90
,”
Int. J. Thermophys.
32
,
12
25
(
2011
).
19.
C.
Gaiser
,
B.
Fellmuth
 et al, “
2022 update for the differences between thermodynamic temperature and ITS-90 below 335 K
,”
J. Phys. Chem. Ref. Data
51
,
043105
(
2022
).
20.
E.
Tiesinga
,
P. J.
Mohr
,
D. B.
Newell
, and
B. N.
Taylor
, “
CODATA recommended values of the fundamental physical constants: 2018
,”
Rev. Mod. Phys.
93
,
025010
(
2021
).
21.
E.
Tiesinga
,
P. J.
Mohr
,
D. B.
Newell
, and
B. N.
Taylor
, “
CODATA recommended values of the fundamental physical constants: 2018
,”
J. Phys. Chem. Ref. Data
50
,
033105
(
2021
).
22.
J. R.
Gat
, “
Oxygen and hydrogen isotopes in the hydrologic cycle
,”
Annu. Rev. Earth Planet. Sci.
24
,
225
262
(
1996
).
23.
G. J.
Bowen
,
Z.
Cai
,
R. P.
Fiorella
, and
A. L.
Putman
, “
Isotopes in the water cycle: Regional- to global-scale patterns and applications
,”
Annu. Rev. Earth Planet. Sci.
47
,
453
479
(
2019
).
24.
P. G.
Aron
,
N. E.
Levin
,
E. J.
Beverly
,
T. E.
Huth
,
B. H.
Passey
,
E. M.
Pelletier
,
C. J.
Poulsen
,
I. Z.
Winkelstern
, and
D. A.
Yarian
, “
Triple oxygen isotopes in the water cycle
,”
Chem. Geol.
565
,
120026
(
2021
).
25.
R.
Gonfiantini
, “
Standards for stable isotope measurements in natural compounds
,”
Nature
271
,
534
536
(
1978
).
26.
National Institute of Standards and Technology, Reference Material Information Sheet, Reference Material 8535. NIST Standard Reference Materials Program, Gaithersburg, MD, available at https://tsapps.nist.gov/srmext/certificates/8535.pdf,
2022
.
27.
International Atomic Energy Agency, “Reference Sheet for International Measurement Standards, VSMOW2 Vienna Standard Mean Ocean Water 2 and SLAP2 Standard Light Antarctic Precipitation 2, https://nucleus.iaea.org/sites/ReferenceMaterials/Shared Documents/ReferenceMaterials/StableIsotopes/VSMOW2/VSMOW2_SLAP2.pdf,
2017
.
28.
International Association for the Properties of Water and Steam, IAPWS G5-01(2020), Guideline on the Use of Fundamental Physical Constants and Basic Constants of Water,
2001
.
29.
M.
Wang
,
W. J.
Huang
,
F. G.
Kondev
,
G.
Audi
, and
S.
Naimi
, “
The AME 2020 atomic mass evaluation (II). Tables, graphs and references
,”
Chin. Phys. C
45
,
030003
(
2021
).
30.
G. S.
Kell
, “
Effects of isotopic composition, temperature, pressure, and dissolved gases on the density of liquid water
,”
J. Phys. Chem. Ref. Data
6
,
1109
1131
(
1977
).
31.
A. G.
Császár
,
G.
Czakó
,
T.
Furtenbacher
,
J.
Tennyson
,
V.
Szalay
,
S. V.
Shirin
,
N. F.
Zobov
, and
O. L.
Polyansky
, “
On equilibrium structures of the water molecule
,”
J. Chem. Phys.
122
,
214305
(
2005
).
32.
G.
Czakó
,
E.
Mátyus
, and
A. G.
Császár
, “
Bridging theory with experiment: A benchmark study of thermally averaged structural and effective spectroscopic parameters of the water molecule
,”
J. Phys. Chem. A
113
,
11665
11678
(
2009
).
33.
I. I.
Mizus
,
A. A.
Kyuberis
,
N. F.
Zobov
,
V. Y.
Makhnev
,
O. L.
Polyansky
, and
J.
Tennyson
, “
High-accuracy water potential energy surface for the calculation of infrared spectra
,”
Philos. Trans. R. Soc., A
376
,
20170149
(
2018
).
34.
W. F.
Kuhs
and
M. S.
Lehmann
, “
The structure of ice-Ih
,” in
Water Science Reviews 2: Crystalline Hydrates, Water Science Reviews
, edited by
F.
Franks
(
Cambridge University Press
,
Cambridge
,
1986
), Vol. 2, pp.
1
66
.
35.
M.
Antonio Floriano
,
D. D.
Klug
,
E.
Whalley
,
E. C.
Svensson
,
V. F.
Sears
, and
E. D.
Hallman
, “
Direct determination of the intramolecular O–D distance in ice Ih and Ic by neutron diffraction
,”
Nature
329
,
821
823
(
1987
).
36.
A.
Zeidler
,
P. S.
Salmon
,
H. E.
Fischer
,
J. C.
Neuefeind
,
J. M.
Simonson
, and
T. E.
Markland
, “
Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamics
,”
J. Phys.: Condens. Matter
24
,
284126
(
2012
).
37.
S. L.
Shostak
,
W. L.
Ebenstein
, and
J. S.
Muenter
, “
The dipole moment of water. I. dipole moments and hyperfine properties of H2O and HDO in the ground and excited vibrational states
,”
J. Chem. Phys.
94
,
5875
5882
(
1991
).
38.
T. R.
Dyke
and
J. S.
Muenter
, “
Electric dipole moments of low J states of H2O and D2O
,”
J. Chem. Phys.
59
,
3125
3127
(
1973
).
39.
G.
Garberoglio
,
C.
Lissoni
,
L.
Spagnoli
, and
A. H.
Harvey
, “
Comprehensive calculation of the first dielectric virial coefficient of water
” (unpublished) (
2023
).
40.
J.
Verhoeven
and
A.
Dymanus
, “
Magnetic properties and molecular quadrupole tensor of the water molecule by beam-maser Zeeman spectroscopy
,”
J. Chem. Phys.
52
,
3222
3233
(
1970
).
41.
E. R.
Batista
,
S. S.
Xantheas
, and
H.
Jónsson
, “
Molecular multipole moments of water molecules in ice Ih
,”
J. Chem. Phys.
109
,
4546
4551
(
1998
).
42.
O.
Loboda
and
C.
Millot
, “
Geometry-dependent atomic multipole models for the water molecule
,”
J. Chem. Phys.
147
,
161718
(
2017
).
43.
H.
Chen
,
M.
Liu
, and
T.
Yan
, “
Molecular multipoles and (hyper)polarizabilities of water by ab initio calculations
,”
Chem. Phys. Lett.
752
,
137555
(
2020
).
44.
Y. S.
Badyal
,
M.-L.
Saboungi
,
D. L.
Price
,
S. D.
Shastri
,
D. R.
Haeffner
, and
A. K.
Soper
, “
Electron distribution in water
,”
J. Chem. Phys.
112
,
9206
9208
(
2000
).
45.
P. L.
Silvestrelli
and
M.
Parrinello
, “
Structural, electronic, and bonding properties of liquid water from first principles
,”
J. Chem. Phys.
111
,
3572
3580
(
1999
).
46.
A. V.
Gubskaya
and
P. G.
Kusalik
, “
The total molecular dipole moment for liquid water
,”
J. Chem. Phys.
117
,
5290
5302
(
2002
).
47.
A.
Bankura
,
A.
Karmakar
,
V.
Carnevale
,
A.
Chandra
, and
M. L.
Klein
, “
Structure, dynamics, and spectral diffusion of water from first-principles molecular dynamics
,”
J. Phys. Chem. C
118
,
29401
29411
(
2014
).
48.
H.
Liu
,
Y.
Wang
, and
J. M.
Bowman
, “
Transferable ab initio dipole moment for water: Three applications to bulk water
,”
J. Phys. Chem. B
120
,
1735
1742
(
2016
).
49.
M.
Chen
,
H.-Y.
Ko
 et al, “
Ab initio theory and modeling of water
,”
Proc. Nat. Acad. Sci. U. S. A.
114
,
10846
10851
(
2017
).
50.
L.
Zheng
,
M.
Chen
,
Z.
Sun
,
H.-Y.
Ko
,
B.
Santra
,
P.
Dhuvad
, and
X.
Wu
, “
Structural, electronic, and dynamical properties of liquid water by ab initio molecular dynamics based on SCAN functional within the canonical ensemble
,”
J. Chem. Phys.
148
,
164505
(
2018
).
51.
R.
Schödel
,
A.
Walkov
, and
A.
Abou-Zeid
, “
High-accuracy determination of water vapor refractivity by length interferometry
,”
Opt. Lett.
31
,
1979
1981
(
2006
).
52.
G. D.
Zeiss
and
W. J.
Meath
, “
Dispersion energy constants C6(A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O
,”
Mol. Phys.
33
,
1155
1176
(
1977
).
53.
K. U.
Lao
,
J.
Jia
,
R.
Maitra
, and
R. A.
DiStasio
, “
On the geometric dependence of the molecular dipole polarizability in water: A benchmark study of higher-order electron correlation, basis set incompleteness error, core electron effects, and zero-point vibrational contributions
,”
J. Chem. Phys.
149
,
204303
(
2018
).
54.
P. F.
Egan
, “
Capability of commercial trackers as compensators for the absolute refractive index of air
,”
Precis. Eng.
77
,
46
64
(
2022
).
55.
K.
Ruud
,
D.
Jonsson
, and
P. R.
Taylor
, “
Vibrational effects on electric and magnetic susceptibilities: application to the properties of the water molecule
,”
Phys. Chem. Chem. Phys.
2
,
2161
2171
(
2000
).
56.
H. W.
Woolley
, “
Thermodynamic properties for H2O in the ideal gas state
,” in
Water and Steam—Their Properties and Current Industrial Applications, Proceedings of the 9th International Conference on the Properties of Steam
, edited by
J.
Straub
and
K.
Scheffler
(
Pergamon Press
,
Oxford
,
1980
), pp.
166
175
.
57.
H. W.
Woolley
, “
Ideal gas thermodynamic functions for water
,”
J. Res. Natl. Bur. Stand.
92
,
35
51
(
1987
).
58.
T.
Furtenbacher
,
T.
Szidarovszky
,
J.
Hrubý
,
A. A.
Kyuberis
,
N. F.
Zobov
,
O. L.
Polyansky
,
J.
Tennyson
, and
A. G.
Császár
, “
Definitive ideal-gas thermochemical functions of the H216O molecule
,”
J. Phys. Chem. Ref. Data
45
,
043104
(
2016
).
59.
I.
Simkó
,
T.
Furtenbacher
,
J.
Hrubý
,
N. F.
Zobov
,
O. L.
Polyansky
,
J.
Tennyson
,
R. R.
Gamache
,
T.
Szidarovszky
,
N.
Dénes
, and
A. G.
Császár
, “
Recommended ideal-gas thermochemical functions for heavy water and its substituent isotopologues
,”
J. Phys. Chem. Ref. Data
46
,
023104
(
2017
).
60.
R. R.
Gamache
,
B.
Vispoel
,
M.
Rey
,
A.
Nikitin
,
V.
Tyuterev
,
O.
Egorov
,
I. E.
Gordon
, and
V.
Boudon
, “
Total internal partition sums for the HITRAN2020 database
,”
J. Quant. Spectrosc. Radiat. Transfer
271
,
107713
(
2021
).
61.
International Formulation Committee of the Sixth International Conference on the Properties of Steam
,
The 1967 Formulation for Industrial Use
(
VDI
,
Düsseldorf
,
1967
).
62.
C. A.
Meyer
,
R. B.
McClintock
,
G. J.
Silvestri
, and
R. C.
Spencer
,
ASME Steam Tables
(
American Society of Mechanical Engineers (ASME)
,
New York
,
1967
).
63.
The Japan Society of Mechanical Engineers
,
JSME Steam Tables
(
JSME
,
Tokyo
,
1968
).
64.
United Kingdom Committee on the Properties of Steam
,
UK Steam Tables in SI Units 1970
(
Edward Arnold
,
London
,
1970
).
65.
E.
Schmidt
and
U.
Grigull
, Properties of Water and Steam in SI-units.
Thermodynamische Eigenschaften von Wasser und Wasserdampf. 0–800°C, 0–1000 bar
, 2nd ed. (
Springer
,
Berlin
,
1979
).
66.
O.
Šifner
and
F.
Němec
,
Thermophysical Properties of Ordinary and Heavy Water: International Standards and Shortened Steam Tables
, Studie ČSAV (
Academia
,
Prague
,
1990
) (in Czech).
67.
International Formulation Committee of the Sixth International Conference on the Properties of Steam
,
The 1968 IFC Formulation for Scientific and General Use
(
ASME
,
New York
,
1968
).
68.
M. P.
Vukalovich
,
S. L.
Rivkin
, and
A. A.
Alexandrov
,
Tables of the Thermophysical Properties of Water and Steam
(
GS SSD
,
Moscow
,
1969
).
69.
J. H.
Keenan
,
F. G.
Keyes
,
P. G.
Hill
, and
J. G.
Moore
,
Steam Tables: Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases
(
John Wiley & Sons
,
New York
,
1969
).
70.
L.
Haar
,
J. S.
Gallagher
, and
G. S.
Kell
,
NBS/NRC Steam Tables
(
Hemisphere
,
Washington, DC
,
1984
).
71.
J.
Kestin
and
J. V.
Sengers
, “
New international formulations for the thermodynamic properties of light and heavy water
,”
J. Phys. Chem. Ref. Data
15
,
305
320
(
1986
).
72.
W.
Wagner
and
A.
Pruß
, “
The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use
,”
J. Phys. Chem. Ref. Data
31
,
387
535
(
2002
).
73.
International Association for the Properties of Water and Steam
, IAPWS R6-95(2018), Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use,
2018
.
74.
J. M. H.
Levelt Sengers
,
J.
Straub
,
K.
Watanabe
, and
P. G.
Hill
, “
Assessment of critical parameter values for H2O and D2O
,”
J. Phys. Chem. Ref. Data
14
,
193
207
(
1985
).
75.
International Association for the Properties of Water and Steam, IAPWS R2-83(1992), Release on the Values of Temperature, Pressure and Density of Ordinary and Heavy Water Substances at their Respective Critical Points,
1992
.
76.
D. R.
White
and
W. L.
Tew
, “
Improved estimates of the isotopic correction constants for the triple point of water
,”
Int. J. Thermophys.
31
,
1644
1653
(
2010
).
77.
V.
Faghihi
,
A.
Peruzzi
,
A. T.
Aerts-Bijma
,
H. G.
Jansen
,
J. J.
Spriensma
,
J.
van Geel
, and
H. A. J.
Meijer
, “
Accurate experimental determination of the isotope effects on the triple point temperature of water. I. Dependence on the 2H abundance
,”
Metrologia
52
,
819
826
(
2015
).
78.
V.
Faghihi
,
M.
Kozicki
,
A. T.
Aerts-Bijma
,
H. G.
Jansen
,
J. J.
Spriensma
,
A.
Peruzzi
, and
H. A. J.
Meijer
, “
Accurate experimental determination of the isotope effects on the triple point temperature of water. II. Combined dependence on the 18O and 17O abundances
,”
Metrologia
52
,
827
834
(
2015
).
79.
L. A.
Guildner
,
D. P.
Johnson
, and
F. E.
Jones
, “
Vapor pressure of water at its triple point
,”
J. Res. Natl. Bur. Stand.
80A
,
505
521
(
1976
).
80.
J. R.
Cooper
, “
Representation of the ideal-gas thermodynamic properties of water
,”
Int. J. Thermophys.
3
,
35
43
(
1982
).
81.
R.
Feistel
,
D. G.
Wright
,
H.-J.
Kretzschmar
,
E.
Hagen
,
S.
Herrmann
, and
R.
Span
, “
Thermodynamic properties of sea air
,”
Ocean Sci
6
,
91
141
(
2010
).
82.
International Association for the Properties of Water and Steam, IAPWS G9-12, Guideline on a Low-Temperature Extension of the IAPWS-95 Formulation for Water Vapor,
2012
.
83.
H.
Sato
,
K.
Watanabe
,
J. M. H.
Levelt Sengers
,
J. S.
Gallagher
,
P. G.
Hill
,
J.
Straub
, and
W.
Wagner
, “
Sixteen thousand evaluated experimental thermodynamic property data for water and steam
,”
J. Phys. Chem. Ref. Data
20
,
1023
1044
(
1991
).
84.
H. F.
Stimson
, “
Some precise measurements of the vapor pressure of water in the range from 25 to 100°C
,”
J. Res. Natl. Bur. Stand.
73A
,
493
496
(
1969
).
85.
N. S.
Osborne
,
H. F.
Stimson
,
E. F.
Fiock
, and
D. C.
Ginnings
, “
The pressure of saturated water vapor in the range 100° to 374°C
,”
Bur. Stand. J. Res.
10
,
155
188
(
1933
).
86.
G. S.
Kell
,
G. E.
McLaurin
,
E.
Whalley
, and
W. G.
Schneider
, “
The pVT properties of water V. The fluid to 1 kbar at 350–500°C and along the saturation line from 150 to 350°C
,”
Philos. Trans. R. Soc. London, Ser. A
315
,
235
246
(
1985
).
87.
N. S.
Osborne
,
H. F.
Stimson
, and
D. C.
Ginnings
, “
Measurements of heat capacity and heat of vaporization of water in the range 0° to 100°C
,”
J. Res. Natl. Bur. Stand.
23
,
197
260
(
1939
).
88.
N. S.
Osborne
,
H. F.
Stimson
, and
D. C.
Ginnings
, “
Calorimetric determination of the thermodynamic properties of saturated water in both the liquid and gaseous states from 100 to 374°C
,”
J. Res. Natl. Bur. Stand.
18
,
389
447
(
1937
).
89.
A.
Saul
and
W.
Wagner
, “
International equations for the saturation properties of ordinary water substance
,”
J. Phys. Chem. Ref. Data
16
,
893
901
(
1987
).
90.
G. S.
Kell
,
G. E.
McLaurin
,
E.
Whalley
, and
W. G.
Schneider
, “
PVT properties of water—VII. Vapour densities of light and heavy water from 150 to 500°C
,”
Proc. R. Soc. London, Ser. A
425
,
49
71
(
1989
).
91.
M. P.
Vukalovich
,
W. N.
Zubarev
, and
A. A.
Alexandrov
,
Teploenergetika
8
(
10
),
79
(
1961
).
92.
G. S.
Kell
and
E.
Whalley
, “
Reanalysis of the density of liquid water in the range 0–150°C and 0–1 kbar
,”
J. Chem. Phys.
62
,
3496
3503
(
1975
).
93.
T.
Grindley
and
J. E.
Lind
, “
PVT properties of water and mercury
,”
J. Chem. Phys.
54
,
3983
3989
(
1971
).
94.
P. W.
Bridgman
, “
The pressure-volume-temperature relations of the liquid, and the phase diagram of heavy water
,”
J. Chem. Phys.
3
,
597
605
(
1935
).
95.
P. W.
Bridgman
, “
Freezing parameters and compressions of twenty-one substances to 50,000 kg/cm2
,”
Proc. Am. Acad. Arts Sci.
74
,
399
424
(
1942
).
96.
G. S.
Kell
,
G. E.
McLaurin
,
E.
Whalley
, and
W. G.
Schneider
, “
The PVT properties of water, IV. Liquid water in the range 150–350°C, from saturation to 1 kbar
,”
Proc. R. Soc. London, Ser. A
360
,
389
402
(
1978
).
97.
R.
Hilbert
,
K.
Tödheide
, and
E. U.
Franck
, “
PVT data for water in the ranges 20 to 600°C and 100 to 4000 bar
,”
Ber. Bunsenges. Phys. Chem.
85
,
636
643
(
1981
).
98.
V. A.
Del Grosso
and
C. W.
Mader
, “
Speed of sound in pure water
,”
J. Acoust. Soc. Am.
52
,
1442
1446
(
1972
).
99.
K.
Fujii
and
R.
Masui
, “
Accurate measurements of the sound velocity in pure water by combining a coherent phase-detection technique and a variable path-length interferometer
,”
J. Acoust. Soc. Am.
93
,
276
282
(
1993
).
100.
K.
Fujii
, “
Accurate measurements of the sound velocity in pure water under high pressure
,”
Paper Presented at 12th Symposium on Thermophysical Properties
,
Boulder, CO
,
1994
.
101.
R. C.
Castro-Gomez
,
K. R.
Hall
,
J. C.
Holste
,
B. E.
Gammon
, and
K. N.
Marsh
, “
A thermoelectric flow enthalpy-increment calorimeter
,”
J. Chem. Thermodyn.
22
,
269
278
(
1990
).
102.
R.
Philippi
, Fortschritt-Berichte VDI, Reihe 19, Nr. 13,
VDI
,
Düsseldorf, Germany
,
1987
.
103.
S. B.
Kiselev
and
D. G.
Friend
, “
Revision of a multiparameter equation of state to improve the representation in the critical region: application to water
,”
Fluid Phase Equilib.
155
,
33
55
(
1999
).
104.
A.
Kostrowicka Wyczalkowska
,
K. S.
Abdulkadirova
,
M. A.
Anisimov
, and
J. V.
Sengers
, “
Thermodynamic properties of H2O and D2O in the critical region
,”
J. Chem. Phys.
113
,
4985
5002
(
2000
).
105.
V.
Holten
,
J. V.
Sengers
, and
M. A.
Anisimov
, “
Equation of state for supercooled water at pressures up to 400 MPa
,”
J. Phys. Chem. Ref. Data
43
,
043101
(
2014
).
106.
International Association for the Properties of Water and Steam, IAPWS G12-15, Guideline on Thermodynamic Properties of Supercooled Water,
2015
.
107.
W.
Wagner
and
M.
Thol
, “
The behavior of IAPWS-95 from 250 to 300 K and pressures up to 400 MPa: Evaluation based on recently derived property data
,”
J. Phys. Chem. Ref. Data
44
,
043102
(
2015
).
108.
C.-W.
Lin
and
J. P. M.
Trusler
, “
The speed of sound and derived thermodynamic properties of pure water at temperatures between (253 and 473) K and at pressures up to 400 MPa
,”
J. Chem. Phys.
136
,
094511
(
2012
).
109.
J. P. M.
Trusler
and
E. W.
Lemmon
, “
Determination of the thermodynamic properties of water from the speed of sound
,”
J. Chem. Thermodyn.
109
,
61
70
(
2017
).
110.
International Association for the Properties of Water and Steam, IAPWS AN1-03, Uncertainties in Enthalpy for the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (IAPWS-95) and the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (IAPWS-IF97),
2003
.
111.
International Association for the Properties of Water and Steam, IAPWS R7-97(2012), Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam,
2012
.
112.
W.
Wagner
,
J. R.
Cooper
 et al, “
The IAPWS Industrial Formulation 1997 for the thermodynamic properties of water and steam
,”
J. Eng. Gas Turbines Power
122
,
150
184
(
2000
).
113.
W. T.
Parry
,
J. C.
Bellows
,
J. S.
Gallagher
,
A. H.
Harvey
, and
R. D.
Harwood
,
ASME International Steam Tables for Industrial Use
, 3rd ed. (
ASME Press
,
New York
,
2014
).
114.
H.-J.
Kretzschmar
and
W.
Wagner
,
International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97
, 3rd ed. (
Springer-Verlag
,
Berlin
,
2019
).
115.
W.
Wagner
and
A.
Pruss
, “
International equations for the saturation properties of ordinary water substance. revised according to the international temperature scale of 1990. Addendum to J. Phys. Chem. Ref. Data 16, 893 (1987)
,”
J. Phys. Chem. Ref. Data
22
,
783
787
(
1993
).
116.
International Association for the Properties of Water and Steam, IAPWS SR1-86(1992), Revised Supplementary Release on Saturation Properties of Ordinary Water Substance,
1992
.
117.
J.
Pátek
,
J.
Hrubý
,
J.
Klomfar
,
M.
Součková
, and
A. H.
Harvey
, “
Reference correlations for thermophysical properties of liquid water at 0.1 MPa
,”
J. Phys. Chem. Ref. Data
38
,
21
29
(
2009
).
118.
International Association for the Properties of Water and Steam, IAPWS SR6-08(2011), Revised Supplementary Release on Properties of Liquid Water at 0.1 MPa,
2011
.
119.
J.
Hamelin
,
J. B.
Mehl
, and
M. R.
Moldover
, “
The static dielectric constant of liquid water between 274 and 418 K near the saturated vapor pressure
,”
Int. J. Thermophys.
19
,
1359
1380
(
1998
).
120.
M.
Tanaka
,
G.
Girard
,
R.
Davis
,
A.
Peuto
, and
N.
Bignell
, “
Recommended table for the density of water between 0°C and 40°C based on recent experimental reports
,”
Metrologia
38
,
301
309
(
2001
).
121.
M.
Takenaka
and
R.
Masui
, “
Measurement of the thermal expansion of pure water in the temperature range 0°C–85°C
,”
Metrologia
27
,
165
171
(
1990
).
122.
R.
Masui
,
K.
Fujii
, and
M.
Takenaka
, “
Determination of the absolute density of water at 16°C and 0,101 325 MPa
,”
Metrologia
32
,
333
362
(
1995
).
123.
H.
Watanabe
, “
Thermal dilatation of water between 0°C and 44°C
,”
Metrologia
28
,
33
43
(
1991
).
124.
J. B.
Patterson
and
E. C.
Morris
, “
Measurement of absolute water density, 1°C to 40°C
,”
Metrologia
31
,
277
288
(
1994
).
125.
A. H.
Harvey
,
R.
Span
,
K.
Fujii
,
M.
Tanaka
, and
R. S.
Davis
, “
Density of water: Roles of the CIPM and IAPWS standards
,”
Metrologia
46
,
196
198
(
2009
).
126.
International Association for the Properties of Water and Steam, IAPWS AN4-09, Roles of IAPWS and CIPM Standards for the Density of Water,
2009
.
127.
N.
Bignell
, “
The effect of dissolved air on the density of water
,”
Metrologia
19
,
57
59
(
1983
).
128.
A. H.
Harvey
,
S. G.
Kaplan
, and
J. H.
Burnett
, “
Effect of dissolved air on the density and refractive index of water
,”
Int. J. Thermophys.
26
,
1495
1514
(
2005
).
129.
G.
Girard
and
M.
Menaché
, “
Variation de la masse volumique de l’eau en fonction de sa composition isotopique
,”
Metrologia
7
,
83
87
(
1971
).
130.
C. A.
Angell
, “
Supercooled water
,”
Annu. Rev. Phys. Chem.
34
,
593
630
(
1983
).
131.
P.
Gallo
,
K.
Amann-Winkel
 et al, “
Water: A tale of two liquids
,”
Chem. Rev.
116
,
7463
7500
(
2016
).
132.
P.
Gallo
,
J.
Bachler
 et al, “
Advances in the study of supercooled water
,”
Eur. Phys. J. E
44
,
143
(
2021
).
133.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
, “
Phase behaviour of metastable water
,”
Nature
360
,
324
328
(
1992
).
134.
R. S.
Singh
,
J. W.
Biddle
,
P. G.
Debenedetti
, and
M. A.
Anisimov
, “
Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water
,”
J. Chem. Phys.
144
,
144504
(
2016
).
135.
J. W.
Biddle
,
R. S.
Singh
,
E. M.
Sparano
,
F.
Ricci
,
M. A.
González
,
C.
Valeriani
,
J. L. F.
Abascal
,
P. G.
Debenedetti
,
M. A.
Anisimov
, and
F.
Caupin
, “
Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions
,”
J. Chem. Phys.
146
,
034502
(
2017
).
136.
J.
Weis
,
F.
Sciortino
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
, “
Liquid-liquid criticality in the WAIL water model
,”
J. Chem. Phys.
157
,
024502
(
2022
).
137.
K. H.
Kim
,
A.
Späh
 et al, “
Maxima in the thermodynamic response and correlation functions of deeply supercooled water
,”
Science
358
,
1589
1593
(
2017
).
138.
K. H.
Kim
,
K.
Amann-Winkel
 et al, “
Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure
,”
Science
370
,
978
982
(
2020
).
139.
J.
Bachler
,
J.
Giebelmann
, and
T.
Loerting
, “
Experimental evidence for glass polymorphism in vitrified water droplets
,”
Proc. Nat. Acad. Sci. U. S. A.
118
,
e2108194118
(
2021
).
140.
B.
Uralcan
,
F.
Latinwo
,
P. G.
Debenedetti
, and
M. A.
Anisimov
, “
Pattern of property extrema in supercooled and stretched water models and a new correlation for predicting the stability limit of the liquid state
,”
J. Chem. Phys.
150
,
064503
(
2019
).
141.
F.
Caupin
and
M. A.
Anisimov
, “
Thermodynamics of supercooled and stretched water: Unifying two-structure description and liquid-vapor spinodal
,”
J. Chem. Phys.
151
,
034503
(
2019
).
142.
M.
Duška
, “
Water above the spinodal
,”
J. Chem. Phys.
152
,
174501
(
2020
).
143.
V. P.
Voronov
,
V. E.
Podnek
, and
M. A.
Anisimov
, “
High-resolution adiabatic calorimetry of supercooled water
,”
J. Phys.: Conf. Ser.
1385
,
012008
(
2019
).
144.
H.
Pathak
,
A.
Späh
 et al, “
Enhancement and maximum in the isobaric specific-heat capacity measurements of deeply supercooled water using ultrafast calorimetry
,”
Proc. Nat. Acad. Sci. U. S. A.
118
,
e2018379118
(
2021
).
145.
G.
Beltramino
,
L.
Rosso
,
R.
Cuccaro
,
S.
Tabandeh
,
D.
Smorgon
, and
V.
Fernicola
, “
Accurate vapor pressure measurements of supercooled water in the temperature range between 252 K and 273 K
,”
J. Chem. Thermodyn.
141
,
105944
(
2020
).
146.
J.
Kestin
and
J. H.
Whitelaw
, “
Sixth International Conference on the Properties of Steam—Transport Properties of Water Substance
,”
J. Eng. Power
88
,
82
104
(
1966
).
147.
A. M.
Sirota
,
V. I.
Latunin
, and
G. M.
Belyaeva
,
Teploenergetika
20
(
8
),
6
(
1973
).
148.
B.
Le Neindre
,
R.
Tufeu
,
P.
Bury
, and
J. V.
Sengers
, “
Thermal conductivity of carbon dioxide and steam in the supercritical region
,”
Ber. Bunsenges. Phys. Chem.
77
,
262
275
(
1973
).
149.
A.
Nagashima
, “
Viscosity of water substance–new international formulation and its background
,”
J. Phys. Chem. Ref. Data
6
,
1133
1166
(
1977
).
150.
J. V.
Sengers
,
J. T. R.
Watson
,
R. S.
Basu
,
B.
Kamgar‐Parsi
, and
R. C.
Hendricks
, “
Representative equations for the thermal conductivity of water substance
,”
J. Phys. Chem. Ref. Data
13
,
893
933
(
1984
).
151.
J. V.
Sengers
and
B.
Kamgar‐Parsi
, “
Representative equations for the viscosity of water substance
,”
J. Phys. Chem. Ref. Data
13
,
185
205
(
1984
).
152.
J. T. R.
Watson
,
R. S.
Basu
, and
J. V.
Sengers
, “
An improved representative equation for the dynamic viscosity of water substance
,”
J. Phys. Chem. Ref. Data
9
,
1255
1290
(
1980
).
153.
J. V.
Sengers
and
J. T. R.
Watson
, “
Improved international formulations for the viscosity and thermal conductivity of water substance
,”
J. Phys. Chem. Ref. Data
15
,
1291
1314
(
1986
).
154.
M. J.
Assael
,
E.
Bekou
,
D.
Giakoumakis
,
D. G.
Friend
,
M. A.
Killeen
,
J.
Millat
, and
A.
Nagashima
, “
Experimental data for the viscosity and thermal conductivity of water and steam
,”
J. Phys. Chem. Ref. Data
29
,
141
166
(
2000
).
155.
International Association for the Properties of Water and Steam, IAPWS R12-08, Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance,
2008
.
156.
M. L.
Huber
,
R. A.
Perkins
,
A.
Laesecke
,
D. G.
Friend
,
J. V.
Sengers
,
M. J.
Assael
,
I. N.
Metaxa
,
E.
Vogel
,
R.
Mareš
, and
K.
Miyagawa
, “
New international formulation for the viscosity of H2O
,”
J. Phys. Chem. Ref. Data
38
,
101
125
(
2009
).
157.
V.
Teske
,
E.
Vogel
, and
E.
Bich
, “
Viscosity measurements on water vapor and their evaluation
,”
J. Chem. Eng. Data
50
,
2082
2087
(
2005
).
158.
R.
Hellmann
and
E.
Vogel
, “
The viscosity of dilute water vapor revisited: New reference values from experiment and theory for temperatures between (250 and 2500) K
,”
J. Chem. Eng. Data
60
,
3600
3605
(
2015
).
159.
J. K.
Bhattacharjee
,
R. A.
Ferrell
,
R. S.
Basu
, and
J. V.
Sengers
, “
Crossover function for the critical viscosity of a classical fluid
,”
Phys. Rev. A
24
,
1469
1475
(
1981
).
160.
H. C.
Burstyn
,
J. V.
Sengers
,
J. K.
Bhattacharjee
, and
R. A.
Ferrell
, “
Dynamic scaling function for critical fluctuations in classical fluids
,”
Phys. Rev. A
28
,
1567
1578
(
1983
).
161.
P.
Ragueneau
,
F.
Caupin
, and
B.
Issenmann
, “
Shear viscosity and Stokes-Einstein violation in supercooled light and heavy water
,”
Phys. Rev. E
106
,
014616
(
2022
).
162.
International Association for the Properties of Water and Steam, IAPWS R15-11, Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance,
2011
.
163.
M. L.
Huber
,
R. A.
Perkins
,
D. G.
Friend
,
J. V.
Sengers
,
M. J.
Assael
,
I. N.
Metaxa
,
K.
Miyagawa
,
R.
Hellmann
, and
E.
Vogel
, “
New international formulation for the thermal conductivity of H2O
,”
J. Phys. Chem. Ref. Data
41
,
033102
(
2012
).
164.
R.
Hellmann
,
E.
Bich
,
E.
Vogel
,
A. S.
Dickinson
, and
V.
Vesovic
, “
Calculation of the transport and relaxation properties of dilute water vapor
,”
J. Chem. Phys.
131
,
014303
(
2009
).
165.
R.
Hellmann
and
E.
Bich
, “
An improved kinetic theory approach for calculating the thermal conductivity of polyatomic gases
,”
Mol. Phys.
113
,
176
183
(
2015
).
166.
G. A.
Olchowy
and
J. V.
Sengers
, “
A simplified representation for the thermal conductivity of fluids in the critical region
,”
Int. J. Thermophys.
10
,
417
426
(
1989
).
167.
E. H.
Abramson
,
J. M.
Brown
, and
L. J.
Slutsky
, “
The thermal diffusivity of water at high pressures and temperatures
,”
J. Chem. Phys.
115
,
10461
10463
(
2001
).
168.
R.
Mills
, “
Self-diffusion in normal and heavy water in the range 1–45°
,”
J. Phys. Chem.
77
,
685
688
(
1973
).
169.
A. J.
Easteal
,
W. E.
Price
, and
L. A.
Woolf
, “
Diaphragm cell for high-temperature diffusion measurements. Tracer diffusion coefficients for water to 363 K
,”
J. Chem. Soc. Farad. Trans. 1
85
,
1091
1097
(
1989
).
170.
K.
Yoshida
,
N.
Matubayasi
, and
M.
Nakahara
, “
Self-diffusion of supercritical water in extremely low-density region
,”
J. Chem. Phys.
125
,
074307
(
2006
).
171.
K.
Yoshida
,
N.
Matubayasi
, and
M.
Nakahara
, “
Self-diffusion coefficients for water and organic solvents at high temperatures along the coexistence curve
,”
J. Chem. Phys.
129
,
214501
(
2008
).
172.
W. J.
Lamb
,
G. A.
Hoffman
, and
J.
Jonas
, “
Self-diffusion in compressed supercritical water
,”
J. Chem. Phys.
74
,
6875
6880
(
1981
).
173.
G. S.
Kell
,
G. E.
McLaurin
,
E.
Whalley
, and
W. G.
Schneider
, “
The PVT properties of water VI. Deuterium oxide in the range 150–500°C and 0–100 MPa
,”
Philos. Trans. R. Soc. London, Ser. A
315
,
247
258
(
1985
).
174.
P. G.
Hill
,
R. D. C.
MacMillan
, and
V.
Lee
, “
A fundamental equation of state for heavy water
,”
J. Phys. Chem. Ref. Data
11
,
1
14
(
1982
).
175.
R.
Wegge
,
M.
Richter
, and
R.
Span
, “
Speed of sound measurements in deuterium oxide (D2O) over the temperature range from (278.2 to 353.2) K at pressures up to 20 MPa
,”
Fluid Phase Equilib.
418
,
175
180
(
2016
).
176.
A.
Blahut
,
J.
Hykl
,
P.
Peukert
,
V.
Vinš
, and
J.
Hrubý
, “
Relative density and isobaric expansivity of cold and supercooled heavy water from 254 to 298 K and up to 100 MPa
,”
J. Chem. Phys.
151
,
034505
(
2019
).
177.
G.
Garberoglio
,
P.
Jankowski
,
K.
Szalewicz
, and
A. H.
Harvey
, “
Fully quantum calculation of the second and third virial coefficients of water and its isotopologues from ab initio potentials
,”
Faraday Discuss.
212
,
467
497
(
2018
).
178.
S.
Herrig
,
M.
Thol
,
A. H.
Harvey
, and
E. W.
Lemmon
, “
A reference equation of state for heavy water
,”
J. Phys. Chem. Ref. Data
47
,
043102
(
2018
).
179.
International Association for the Properties of Water and Steam, IAPWS R16-17(2018), Revised Release on the IAPWS Formulation 2017 for the Thermodynamic Properties of Heavy Water,
2018
.
180.
A. S.
Friedman
and
L.
Haar
, “
High-speed machine computation of ideal gas thermodynamic functions. I. Isotopic water molecules
,”
J. Chem. Phys.
22
,
2051
2058
(
1954
).
181.
N.
Matsunaga
and
A.
Nagashima
, “
Transport properties of liquid and gaseous D2O over a wide range of temperature and pressure
,”
J. Phys. Chem. Ref. Data
12
,
933
966
(
1983
).
182.
International Association for the Properties of Water and Steam, IAPWS R17-20, Release on the IAPWS Formulation 2020 for the Viscosity of Heavy Water,
2020
.
183.
M. J.
Assael
,
S. A.
Monogenidou
,
M. L.
Huber
,
R. A.
Perkins
, and
J. V.
Sengers
, “
New international formulation for the viscosity of heavy water
,”
J. Phys. Chem. Ref. Data
50
,
033102
(
2021
).
184.
R.
Hellmann
and
E.
Bich
, “
Transport properties of dilute D2O vapour from first principles
,”
Mol. Phys.
115
,
1057
1064
(
2017
).
185.
International Association for the Properties of Water and Steam, IAPWS R18-21, Release on the IAPWS Formulation 2021 for the Thermal Conductivity of Heavy Water,
2021
.
186.
M. L.
Huber
,
R. A.
Perkins
,
M. J.
Assael
,
S. A.
Monogenidou
,
R.
Hellmann
, and
J. V.
Sengers
, “
New international formulation for the thermal conductivity of heavy water
,”
J. Phys. Chem. Ref. Data
51
,
013102
(
2022
).
187.
A. N.
Dunaeva
,
D. V.
Antsyshkin
, and
O. L.
Kuskov
, “
Phase diagram of H2O: Thermodynamic functions of the phase transitions of high-pressure ices
,”
Sol. Syst. Res.
44
,
202
222
(
2010
).
188.
C. G.
Salzmann
, “
Advances in the experimental exploration of water’s phase diagram
,”
J. Chem. Phys.
150
,
060901
(
2019
).
189.
B.
Journaux
,
J. M.
Brown
 et al, “
Holistic approach for studying planetary hydrospheres: Gibbs representation of ices thermodynamics, elasticity, and the water phase diagram to 2,300 MPa
,”
J. Geophys. Res.: Planets
125
,
e2019JE006176
, (
2020
).
190.
W.
Wagner
,
T.
Riethmann
,
R.
Feistel
, and
A. H.
Harvey
, “
New equations for the sublimation pressure and melting pressure of H2O ice Ih
,”
J. Phys. Chem. Ref. Data
40
,
043103
(
2011
).
191.
R.
Feistel
and
W.
Wagner
, “
High-pressure thermodynamic Gibbs functions of ice and sea ice
,”
J. Mar. Res.
63
,
95
139
(
2005
).
192.
R.
Feistel
and
W.
Wagner
, “
A new equation of state for H2O ice Ih
,”
J. Phys. Chem. Ref. Data
35
,
1021
1047
(
2006
).
193.
International Association for the Properties of Water and Steam, IAPWS R10-06(2009), Revised Release on the Equation of State 2006 for H2O Ice Ih,
2009
.
194.
R.
Feistel
,
D. G.
Wright
,
K.
Miyagawa
,
A. H.
Harvey
,
J.
Hruby
,
D. R.
Jackett
,
T. J.
McDougall
, and
W.
Wagner
, “
Mutually consistent thermodynamic potentials for fluid water, ice and seawater: a new standard for oceanography
,”
Ocean Sci.
4
,
275
291
(
2008
).
195.
D. C.
Ginnings
and
R. J.
Corruccini
, “
An improved ice calorimeter—The determination of its calibration factor and the density of ice at 0°C
,”
J. Res. Natl. Bur. Stand.
38
,
583
591
(
1947
).
196.
G.
Dantl
and
I.
Gregora
, “
Dichte in hexagonalem Eis
,”
Naturwiss.
55
,
176
(
1968
).
197.
T. R.
Butkovich
, “
Linear thermal expansion of ice
,” Technical Report Research Report No. 40,
U. S. Army Snow Ice and Permafrost Research Establishment
,
Wilmette, IL
,
1957
.
198.
P. H.
Gammon
,
H.
Kiefte
, and
M. J.
Clouter
, “
Elastic constants of ice by Brillouin spectroscopy
,”
J. Glaciol.
25
,
159
168
(
1980
).
199.
R. E.
Gagnon
,
H.
Kiefte
,
M. J.
Clouter
, and
E.
Whalley
, “
Pressure dependence of the elastic constants of ice Ih to 2.8 kbar by Brillouin spectroscopy
,”
J. Chem. Phys.
89
,
4522
4528
(
1988
).
200.
W. F.
Giauque
and
J. W.
Stout
, “
The entropy of water and the third law of thermodynamics. The heat capacity of ice from 15 to 273°K
,”
J. Am. Chem. Soc.
58
,
1144
1150
(
1936
).
201.
P.
Flubacher
,
A. J.
Leadbetter
, and
J. A.
Morrison
, “
Heat capacity of ice at low temperatures
,”
J. Chem. Phys.
33
,
1751
1755
(
1960
).
202.
M.
Sugisaki
,
H.
Suga
, and
S.
Seki
, “
Calorimetric study of the glassy state. IV. Heat capacities of glassy water and cubic ice
,”
Bull. Chem. Soc. Jpn.
41
,
2591
2599
(
1968
).
203.
O.
Haida
,
T.
Matsuo
,
H.
Suga
, and
S.
Seki
, “
Calorimetric study of the glassy state X. Enthalpy relaxation at the glass-transition temperature of hexagonal ice
,”
J. Chem. Thermodyn.
6
,
815
825
(
1974
).
204.
N. S.
Osborne
, “
Heat of fusion of ice. A revision
,”
J. Res. Natl. Bur. Stand.
23
,
643
646
(
1939
).
205.
K.
Bielska
,
D. K.
Havey
,
G. E.
Scace
,
D.
Lisak
,
A. H.
Harvey
, and
J. T.
Hodges
, “
High-accuracy measurements of the vapor pressure of ice referenced to the triple point
,”
Geophys. Res. Lett.
40
,
6303
6307
, (
2013
).
206.
International Association for the Properties of Water and Steam, IAPWS R14-08(2011), Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance,
2011
.
207.
D. M.
Murphy
and
T.
Koop
, “
Review of the vapour pressures of ice and supercooled water for atmospheric applications
,”
Q. J. R. Meteorol. Soc.
131
,
1539
1565
(
2005
).
208.
W.
Wagner
,
A.
Saul
, and
A.
Pruß
, “
International equations for the pressure along the melting and along the sublimation curve of ordinary water substance
,”
J. Phys. Chem. Ref. Data
23
,
515
527
(
1994
).
209.
P. W.
Bridgman
, “
Water, in the liquid and five solid forms, under pressure
,”
Proc. Am. Acad. Arts Sci.
47
,
441
558
(
1912
).
210.
P. W.
Bridgman
, “
The phase diagram of water to 45,000 kg/cm2
,”
J. Chem. Phys.
5
,
964
966
(
1937
).
211.
S. E.
Babb
, Jr.
, “
Some notes concerning Bridgman’s manganin pressure scale
,” in
High Pressure Measurement
, edited by
A. A.
Giardini
and
E. C.
Lloyd
(
Butterworths
,
Washington, DC
,
1963
), pp.
115
124
.
212.
G. F.
Molinar
,
V.
Bean
,
J.
Houck
, and
B.
Welch
, “
The mercury melting line up to 1200 MPa
,”
Metrologia
16
,
21
29
(
1980
).
213.
N.
Bignell
and
V. E.
Bean
, “
The H2O (I)–H2O (III)–H2O (L) triple point of water as a fixed pressure point
,”
Metrologia
25
,
205
209
(
1988
).
214.
G. S.
Kell
and
E.
Whalley
, “
Equilibrium line between ice I and III
,”
J. Chem. Phys.
48
,
2359
2361
(
1968
).
215.
H.
Engelhardt
and
E.
Whalley
, “
Ice IV
,”
J. Chem. Phys.
56
,
2678
2684
(
1972
).
216.
F.
Datchi
,
P.
Loubeyre
, and
R.
LeToullec
, “
Extended and accurate determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2)
,”
Phys. Rev. B
61
,
6535
6546
(
2000
).
217.
N.
Dubrovinskaia
and
L.
Dubrovinsky
, “
Melting curve of water studied in externally heated diamond-anvil cell
,”
High Press. Res.
23
,
307
311
(
2003
).
218.
J.-F.
Lin
,
B.
Militzer
,
V. V.
Struzhkin
,
E.
Gregoryanz
,
R. J.
Hemley
, and
H.-k.
Mao
, “
High pressure-temperature Raman measurements of H2O melting to 22 GPa and 900 K
,”
J. Chem. Phys.
121
,
8423
8427
(
2004
).
219.
A. F.
Goncharov
,
N.
Goldman
,
L. E.
Fried
,
J. C.
Crowhurst
,
I.-F. W.
Kuo
,
C. J.
Mundy
, and
J. M.
Zaug
, “
Dynamic ionization of water under extreme conditions
,”
Phys. Rev. Lett.
94
,
125508
(
2005
).
220.
B.
Schwager
and
R.
Boehler
, “
H2O: another ice phase and its melting curve
,”
High Press. Res.
28
,
431
433
(
2008
).
221.
M.
Ahart
,
A.
Karandikar
,
S.
Gramsch
,
R.
Boehler
, and
R. J.
Hemley
, “
High P-T Brillouin scattering study of H2O melting to 26 GPa
,”
High Press. Res.
34
,
327
336
(
2014
).
222.
T.
Kimura
,
Y.
Kuwayama
, and
T.
Yagi
, “
Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique
,”
J. Chem. Phys.
140
,
074501
(
2014
).
223.
J.-A.
Queyroux
,
J.-A.
Hernandez
 et al, “
Melting curve and isostructural solid transition in superionic ice
,”
Phys. Rev. Lett.
125
,
195501
(
2020
).
224.
V. B.
Prakapenka
,
N.
Holtgrewe
,
S. S.
Lobanov
, and
A. F.
Goncharov
, “
Structure and properties of two superionic ice phases
,”
Nat. Phys.
17
,
1233
1238
(
2021
).
225.
G. A.
Slack
, “
Thermal conductivity of ice
,”
Phys. Rev. B
22
,
3065
3071
(
1980
).
226.
O.
Andersson
and
A.
Inaba
, “
Thermal conductivity of crystalline and amorphous ices and its implications on amorphization and glassy water
,”
Phys. Chem. Chem. Phys.
7
,
1441
1449
(
2005
).
227.
S.
Fukusako
, “
Thermophysical properties of ice, snow, and sea ice
,”
Int. J. Thermophys.
11
,
353
372
(
1990
).
228.
G. P.
Johari
and
E.
Whalley
, “
The dielectric properties of ice Ih in the range 272–133 K
,”
J. Chem. Phys.
75
,
1333
1340
(
1981
).
229.
S. G.
Warren
and
R. E.
Brandt
, “
Optical constants of ice from the ultraviolet to the microwave: A revised compilation
,”
J. Geophys. Res.: Atmos.
113
,
D14220
, (
2008
).
230.
W. J.
Wallace
,
The Development of the Chlorinity/Salinity Concept in Oceanography
(
Elsevier
,
Amsterdam
,
1974
).
231.
N. P.
Fofonoff
, “
Physical properties of seawater: A new salinity scale and equation of state for seawater
,”
J. Geophys. Res.: Oceans
90
,
3332
3342
, (
1985
).
232.
F. J.
Millero
, “
History of the equation of state of seawater
,”
Oceanography
23
(
3
),
18
33
(
2010
).
233.
D.
Smythe-Wright
,
W. J.
Gould
,
T. J.
McDougall
,
S.
Sparnocchia
, and
P. L.
Woodworth
, “
IAPSO: Tales from the ocean frontier
,”
Hist. Geo. Space Sci.
10
,
137
150
(
2019
).
234.
F. J.
Millero
,
R.
Feistel
,
D. G.
Wright
, and
T. J.
McDougall
, “
The composition of standard seawater and the definition of the reference-composition salinity scale
,”
Deep Sea Res., Part I
55
,
50
72
(
2008
).
235.
M.
Le Menn
and
R.
Naïr
, “
Review of acoustical and optical techniques to measure absolute salinity of seawater
,”
Front. Mar. Sci.
9
,
1031824
(
2022
).
236.
UNESCO
, Background papers and supporting data on the Practical Salinity Scale 1978, UNESCO Technical Papers in Marine Science No. 37,
UNESCO
,
Paris
,
1981
.
237.
F. J.
Millero
,
C.-T.
Chen
,
A.
Bradshaw
, and
K.
Schleicher
, “
A new high pressure equation of state for seawater
,”
Deep-Sea Res., Part A
27
,
255
264
(
1980
).
238.
UNESCO
, Background papers and supporting data on the International Equation of State of Seawater 1980, UNESCO Technical Papers in Marine Science No. 38,
UNESCO
,
Paris
,
1981
.
239.
N. P.
Fofonoff
and
R. C.
Millard
, Algorithms for the computation of fundamental properties of seawater, UNESCO Technical Papers in Marine Science No. 44,
UNESCO
,
Paris
,
1983
.
240.
R.
Pawlowicz
,
T.
McDougall
,
R.
Feistel
, and
R.
Tailleux
, “
An historical perspective on the development of the Thermodynamic Equation of Seawater—2010
,”
Ocean Sci.
8
,
161
174
(
2012
).
241.
IOC
,
SCOR
, and
IAPSO
, “
The international thermodynamic equation of seawater—2010: Calculation and use of thermodynamic properties
,”
2010
, Manual and Guides No. 56, Intergovernmental Oceanographic Commission, UNESCO, available from http://www.TEOS-10.org.
242.
R.
Feistel
, “
Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond
,”
Ocean Sci.
14
,
471
502
(
2018
).
243.
R.
Feistel
, “
A Gibbs function for seawater thermodynamics for −6 to 80°C and salinity up to 120 g kg−1
,”
Deep Sea Res., Part I
55
,
1639
1671
(
2008
).
244.
International Association for the Properties of Water and Steam, IAPWS R13-08, Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater,
2008
.
245.
T. J.
McDougall
, “
Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes
,”
J. Phys. Oceanogr.
33
,
945
963
(
2003
).
246.
R.
Feistel
, “
A new extended Gibbs thermodynamic potential of seawater
,”
Prog. Oceanogr.
58
,
43
114
(
2003
).
247.
International Association for the Properties of Water and Steam, IAPWS SR7-09, Supplementary Release on a Computationally Efficient Thermodynamic Formulation for Liquid Water for Oceanographic Use,
2009
.
248.
F.
Roquet
,
G.
Madec
,
T. J.
McDougall
, and
P. M.
Barker
, “
Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard
,”
Ocean Model.
90
,
29
43
(
2015
).
249.
UNESCO
, The Practical Salinity Scale 1978 and the International Equation of State of seawater 1980, UNESCO Technical Papers in Marine Science No. 36,
UNESCO
,
Paris
,
1981
.
250.
S.
Seitz
,
R.
Feistel
,
D. G.
Wright
,
S.
Weinreben
,
P.
Spitzer
, and
P.
De Bièvre
, “
Metrological traceability of oceanographic salinity measurement results
,”
Ocean Sci.
7
,
45
62
(
2011
).
251.
R.
Pawlowicz
,
R.
Feistel
,
T. J.
McDougall
,
P.
Ridout
,
S.
Seitz
, and
H.
Wolf
, “
Metrological challenges for measurements of key climatological observables. Part 2: Oceanic salinity
,”
Metrologia
53
,
R12
R25
(
2016
).
252.
K.
Hill
,
T.
Dauphinee
, and
D.
Woods
, “
The extension of the Practical Salinity Scale 1978 to low salinities
,”
IEEE J. Ocean. Eng.
11
,
109
112
(
1986
).
253.
A.
Poisson
and
M. H.
Gadhoumi
, “
An extension of the practical salinity scale 1978 and the equation of state 1980 to high salinities
,”
Deep Sea Res., Part I
40
,
1689
1698
(
1993
).
254.
R.
Pawlowicz
, “
The electrical conductivity of seawater at high temperatures and salinities
,”
Desalination
300
,
32
39
(
2012
).
255.
International Association for the Properties of Water and Steam, IAPWS G14-19, Guideline on the Surface Tension of Seawater,
2019
.
256.
K. G.
Nayar
,
D.
Panchanathan
,
G. H.
McKinley
, and
J. H.
Lienhard
 V
, “
Surface tension of seawater
,”
J. Phys. Chem. Ref. Data
43
,
043103
(
2014
).
257.
V.
Vinš
,
J.
Hykl
, and
J.
Hrubý
, “
Surface tension of seawater at low temperatures including supercooled region down to −25°C
,”
Mar. Chem.
213
,
13
23
(
2019
).
258.
International Association for the Properties of Water and Steam, IAPWS G10-15, Guideline on the Thermal Conductivity of Seawater,
2015
.
259.
P.
Wang
and
A.
Anderko
, “
Revised model for the thermal conductivity of multicomponent electrolyte solutions and seawater
,”
Int. J. Thermophys.
36
,
5
24
(
2015
).
260.
M. M.
Lencka
,
A.
Anderko
,
S. J.
Sanders
, and
R. D.
Young
, “
Modeling viscosity of multicomponent electrolyte solutions
,”
Int. J. Thermophys.
19
,
367
378
(
1998
).
261.
M. H.
Sharqawy
,
J. H.
Lienhard
 V
, and
S. M.
Zubair
, “
Thermophysical properties of seawater: a review of existing correlations and data
,”
Desalin. Water Treat.
16
,
354
380
(
2010
).
262.
A. G.
Dickson
,
M. F.
Camões
,
P.
Spitzer
,
P.
Fisicaro
,
D.
Stoica
,
R.
Pawlowicz
, and
R.
Feistel
, “
Metrological challenges for measurements of key climatological observables. Part 3: Seawater pH
,”
Metrologia
53
,
R26
R39
(
2015
).
263.
S. L.
Clegg
,
M. P.
Humphreys
,
J. F.
Waters
,
D. R.
Turner
, and
A. G.
Dickson
, “
Chemical speciation models based upon the Pitzer activity coefficient equations, including the propagation of uncertainties. II. Tris buffers in artificial seawater at 25°C, and an assessment of the seawater ‘Total’ pH scale
,”
Mar. Chem.
244
,
104096
(
2022
).
264.
R. C.
Millard
and
G.
Seaver
, “
An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength
,”
Deep Sea Res., Part A
37
,
1909
1926
(
1990
).
265.
M. H.
Alford
,
D. W.
Gerdt
, and
C. M.
Adkins
, “
An ocean refractometer: Resolving millimeter-scale turbulent density fluctuations via the refractive index
,”
J. Atmos. Ocean. Technol.
23
,
121
137
(
2006
).
266.
H.
Uchida
,
Y.
Kayukawa
, and
Y.
Maeda
, “
Ultra high-resolution seawater density sensor based on a refractive index measurement using the spectroscopic interference method
,”
Sci. Rep.
9
,
15482
(
2019
).
267.
A.
Watanabe
,
H.
Watanabe
, and
K.
Watanabe
, “
Data survey and correlation of surface tension of water with saturation temperature
,”
Contribution to the Meeting of the Working Group III of the International Association for the Properties of Steam
,
Schlierse, Germany
,
1975
.
268.
International Association for the Properties of Water and Steam, IAPWS R1-76(2014), Revised Release on the Surface Tension of Ordinary Water Substance,
2014
.
269.
N. B.
Vargaftik
,
B. N.
Volkov
, and
L. D.
Voljak
, “
International tables of the surface tension of water
,”
J. Phys. Chem. Ref. Data
12
,
817
820
(
1983
).
270.
J.
Pátek
,
M.
Součková
, and
J.
Klomfar
, “
Generation of recommendable values for the surface tension of water using a nonparametric regression
,”
J. Chem. Eng. Data
61
,
928
935
(
2016
).
271.
V.
Vinš
,
M.
Fransen
,
J.
Hykl
, and
J.
Hrubý
, “
Surface tension of supercooled water determined by using a counterpressure capillary rise method
,”
J. Phys. Chem. B
119
,
5567
5575
(
2015
).
272.
V.
Vinš
,
J.
Hošek
,
J.
Hykl
, and
J.
Hrubý
, “
Surface tension of supercooled water: Inflection point-free course down to 250 K confirmed using a horizontal capillary tube
,”
J. Chem. Eng. Data
62
,
3823
3832
(
2017
).
273.
J.
Hrubý
,
V.
Vinš
,
R.
Mareš
,
J.
Hykl
, and
J.
Kalová
, “
Surface tension of supercooled water: No inflection point down to −25°C
,”
J. Phys. Chem. Lett.
5
,
425
428
(
2014
).
274.
V.
Vinš
,
J.
Hykl
,
J.
Hrubý
,
A.
Blahut
,
D.
Celný
,
M.
Čenský
, and
O.
Prokopová
, “
Possible anomaly in the surface tension of supercooled water: New experiments at extreme supercooling down to −31.4°C
,”
J. Phys. Chem. Lett.
11
,
4443
4447
(
2020
).
275.
J.
Kalová
and
R.
Mareš
, “
Surface tension in the supercooled water region
,”
Int. J. Thermophys.
42
,
131
(
2021
).
276.
J.
Kalová
and
R.
Mareš
, “
Temperature dependence of the surface tension of water, including the supercooled region
,”
Int. J. Thermophys.
43
,
154
(
2022
).
277.
J.
Straub
,
N.
Rosner
, and
U.
Grigull
, “
Oberflächenspannung von leichtem und schwerem Wasser
,”
Wärme Stoffübertrag.
13
,
241
252
(
1980
).
278.
International Association for the Properties of Water and Steam, IAPWS R5-85(1994), Release on Surface Tension of Heavy Water Substance,
1994
.
279.
M.
Uematsu
and
E. U.
Franck
, “
Static dielectric constant of water and steam
,”
J. Phys. Chem. Ref. Data
9
,
1291
1306
(
1980
).
280.
D. G.
Archer
and
P.
Wang
, “
The dielectric constant of water and Debye-Hückel limiting law slopes
,”
J. Phys. Chem. Ref. Data
19
,
371
411
(
1990
).
281.
P. G.
Hill
, “
A unified fundamental equation for the thermodynamic properties of H2O
,”
J. Phys. Chem. Ref. Data
19
,
1233
1274
(
1990
).
282.
International Association for the Properties of Water and Steam, IAPWS R8-97, Release on the Static Dielectric Constant of Ordinary Water Substance for Temperatures from 238 K to 873 K and Pressures up to 1000 MPa,
1997
.
283.
D. P.
Fernández
,
A. R. H.
Goodwin
,
E. W.
Lemmon
,
J. M. H.
Levelt Sengers
, and
R. C.
Williams
, “
A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye–Hückel coefficients
,”
J. Phys. Chem. Ref. Data
26
,
1125
1166
(
1997
).
284.
J. G.
Kirkwood
, “
The dielectric polarization of polar liquids
,”
J. Chem. Phys.
7
,
911
919
(
1939
).
285.
F. E.
Harris
and
B. J.
Alder
, “
Dielectric polarization in polar substances
,”
J. Chem. Phys.
21
,
1031
1038
(
1953
).
286.
G. S.
Anderson
,
R. C.
Miller
, and
A. R. H.
Goodwin
, “
Static dielectric constants for liquid water from 300 K to 350 K at pressures to 13 MPa using a new radio-frequency resonator
,”
J. Chem. Eng. Data
45
,
549
554
(
2000
).
287.
C. E.
Bertrand
,
J. V.
Sengers
, and
M. A.
Anisimov
, “
Critical behavior of the dielectric constant in asymmetric fluids
,”
J. Phys. Chem. B
115
,
14000
14007
(
2011
).
288.
Y. M.
Lukashov
,
V. N.
Shcherbakov
, and
V. V.
Savenko
, “
An experimental investigation of the dielectric constant of heavy water at the saturation line
,”
Therm. Eng.
26
,
728
729
(
1979
).
289.
K. R.
Srinivasan
and
R. L.
Kay
, “
Pressure dependence of the dielectric constant of H2O and D2O
,”
J. Chem. Phys.
60
,
3645
3648
(
1974
).
290.
W. J.
Ellison
,
K.
Lamkaouchi
, and
J.-M.
Moreau
, “
Water: A dielectric reference
,”
J. Mol. Liq.
68
,
171
279
(
1996
).
291.
W. J.
Ellison
, “
Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C
,”
J. Phys. Chem. Ref. Data
36
,
1
18
(
2007
).
292.
P.
Schiebener
,
J.
Straub
,
J. M. H.
Levelt Sengers
, and
J. S.
Gallagher
, “
Refractive index of water and steam as function of wavelength, temperature and density
,”
J. Phys. Chem. Ref. Data
19
,
677
717
(
1990
).
293.
A. H.
Harvey
,
J. S.
Gallagher
, and
J. M. H.
Levelt Sengers
, “
Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density
,”
J. Phys. Chem. Ref. Data
27
,
761
774
(
1998
).
294.
International Association for the Properties of Water and Steam, IAPWS R9-97, Release on the Refractive Index of Ordinary Water Substance as a Function of Wavelength, Temperature and Pressure,
1997
.
295.
J. H.
Burnett
and
S. G.
Kaplan
, “
Measurement of the refractive index and thermo-optic coefficient of water near 193 nm
,”
J. Microlithogr., Microfabr., Microsyst.
3
,
68
72
(
2004
).
296.
D.
Duft
and
T.
Leisner
, “
The index of refraction of supercooled solutions determined by the analysis of optical rainbow scattering from levitated droplets
,”
Int. J. Mass Spectrom.
233
,
61
65
(
2004
).
297.
C.
Goy
,
F.
Caupin
,
M.
Caresana
,
L.
Cremonesi
,
A.
Kalinin
,
G.
Grübel
,
M. A. C.
Potenza
, and
R. E.
Grisenti
, “
Refractive index of supercooled water down to 230.3 K in the wavelength range between 534 and 675 nm
,”
J. Phys. Chem. Lett.
13
,
11872
11877
(
2022
).
298.
L. W.
Tilton
and
J. K.
Taylor
, “
Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60°C
,”
J. Res. Natl. Bur. Stand.
20
,
419
477
(
1938
).
299.
K. P.
Birch
and
M. J.
Downs
, “
An updated Edlén equation for the refractive index of air
,”
Metrologia
30
,
155
162
(
1993
).
300.
W. J.
de Haas
and
P.
Drapier
, “
Magnetochemische Untersuchungen. Messung der absoluten Suszeptibilität des Wassers
,”
Ann. Phys.
347
,
673
684
(
1913
).
301.
A.
Piccard
and
A.
Davand
, “
Nouvelle détermination du coefficient d’aimantation de l’eau
,”
Arch. Sci. Phys. Nat. Geneva
2
,
455
485
(
1920
).
302.
H.
Auer
, “
Die absolute magnetische Suszeptibilität des Wassers und ihre Temperaturabhängigkeit
,”
Ann. Phys.
410
,
593
612
(
1933
).
303.
F. G.
Baddar
,
O. M. M.
Hilal
, and
S.
Sugden
, “
The determination of magnetic susceptibility by the Gouy method
,”
J. Chem. Soc.
1949
,
132
135
.
304.
B. H.
Blott
and
G. J.
Daniell
, “
The determination of magnetic moments of extended samples in a SQUID magnetometer
,”
Meas. Sci. Technol.
4
,
462
467
(
1993
).
305.
R.
Cini
and
M.
Torrini
, “
Temperature dependence of the magnetic susceptibility of water
,”
J. Chem. Phys.
49
,
2826
2830
(
1968
).
306.
J. S.
Philo
and
W. M.
Fairbank
, “
Temperature dependence of the diamagnetism of water
,”
J. Chem. Phys.
72
,
4429
4433
(
1980
).
307.
F. E.
Hoare
, “
Diamagnetic susceptibility of heavy water
,”
Nature
137
,
497
498
(
1936
).
308.
H. P.
Iskenderian
, “
The Rankine magnetic balance and the magnetic susceptibility of H2O, HDO and D2O
,”
Phys. Rev.
51
,
1092
1096
(
1937
).
309.
B.
Cabrera
and
H.
Fahlenbrach
, “
Über den Diamagnetismus des flüssigen und festen schweren Wassers und seinen Temperaturverlauf
,”
Naturwiss.
22
,
417
(
1934
).
310.
F. E.
Senftle
and
A.
Thorpe
, “
Oxygen adsorption and the magnetic susceptibility of ice at low temperatures
,”
Nature
194
,
673
674
(
1962
).
311.
O. B.
Lutnæs
,
A. M.
Teale
,
T.
Helgaker
,
D. J.
Tozer
,
K.
Ruud
, and
J.
Gauss
, “
Benchmarking density-functional-theory calculations of rotational g tensors and magnetizabilities using accurate coupled-cluster calculations
,”
J. Chem. Phys.
131
,
144104
(
2009
).
312.
W. L.
Marshall
and
E. U.
Franck
, “
Ion product of water substance, 0–1000 °C, 1–10,000 bars: New international formulation and its background
,”
J. Phys. Chem. Ref. Data
10
,
295
304
(
1981
).
313.
K. S.
Pitzer
, “
Self-ionization of water at high temperature and the thermodynamic properties of the ions
,”
J. Phys. Chem.
86
,
4704
4708
(
1982
).
314.
A. V.
Bandura
and
S. N.
Lvov
, “
The ionization constant of water over wide ranges of temperature and density
,”
J. Phys. Chem. Ref. Data
35
,
15
30
(
2006
).
315.
M. W.
Chase
, Jr.
,
NIST-JANAF Thermochemical Tables
, 4th ed. (
American Institute of Physics
,
Woodbury, NY
,
1998
).
316.
International Association for the Properties of Water and Steam, IAPWS R11-07(2019), Revised Release on the Ionization Constant of H2O,
2019
.
317.
H.
Arcis
,
J. P.
Ferguson
,
J. S.
Cox
, and
P. R.
Tremaine
, “
The ionization constant of water at elevated temperatures and pressures: New data from direct conductivity measurements and revised formulations from T = 273 K to 674 K and p = 0.1 MPa to 31 MPa
,”
J. Phys. Chem. Ref. Data
49
,
033103
(
2020
).
318.
International Association for the Properties of Water and Steam, IAPWS G1-90, Electrolytic Conductivity (Specific Conductance) of Liquid and Dense Supercritical Water from 0°C to 800°C and Pressures up to 1000 MPa,
1990
.
319.
W. L.
Marshall
, “
Electrical conductance of liquid and supercritical water evaluated from 0°C and 0.1 MPa to high temperatures and pressures. Reduced-state relationships
,”
J. Chem. Eng. Data
32
,
221
226
(
1987
).
320.
M. L.
Japas
,
R.
Fernandez-Prini
,
J.
Horita
, and
D. J.
Wesolowski
, “
Fractioning of isotopic species between coexisting liquid and vapor water: Complete temperature range, including the asymptotic critical behavior
,”
J. Phys. Chem.
99
,
5171
5175
(
1995
).
321.
J.
Horita
and
D. J.
Wesolowski
, “
Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature
,”
Geochim. Cosmochim. Acta
58
,
3425
3437
(
1994
).
322.
L.
Merlivat
and
G.
Nief
, “
Fractionnement isotopique lors des changements d’état solide-vapeur et liquide-vapeur de l’eau á des températures inférieures á 0°C
,”
Tellus
19
,
122
127
(
1967
).
323.
M. D.
Ellehoj
,
H. C.
Steen-Larsen
,
S. J.
Johnsen
, and
M. B.
Madsen
, “
Ice-vapor equilibrium fractionation factor of hydrogen and oxygen isotopes: Experimental investigations and implications for stable water isotope studies
,”
Rapid Commun. Mass Spectrom.
27
,
2149
2158
(
2013
).
324.
K. D.
Lamb
,
B. W.
Clouser
,
M.
Bolot
,
L.
Sarkozy
,
V.
Ebert
,
H.
Saathoff
,
O.
Möhler
, and
E. J.
Moyer
, “
Laboratory measurements of HDO/H2O isotopic fractionation during ice deposition in simulated cirrus clouds
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
5612
5617
(
2017
).
325.
M.
Majoube
, “
Fractionation factor of 18O between water vapour and ice
,”
Nature
226
,
1242
(
1970
).
326.
M.
Majoube
, “
Fractionnement en oxygène 18 et en deutérium entre l'eau et sa vapeur
,”
J. Chim. Phys.
68
,
1423
1436
(
1971
).
327.
M.
Lehmann
and
U.
Siegenthaler
, “
Equilibrium oxygen- and hydrogen-isotope fractionation between ice and water
,”
J. Glaciol.
37
,
23
26
(
1991
).
328.
X.
Wang
and
H. A. J.
Meijer
, “
Ice–liquid isotope fractionation factors for 18O and 2H deduced from the isotopic correction constants for the triple point of water
,”
Isot. Environ. Health Stud.
54
,
304
311
(
2018
).
329.
R.
Hellmann
and
A. H.
Harvey
, “
First-principles diffusivity ratios for kinetic isotope fractionation of water in air
,”
Geophys. Res. Lett.
47
,
e2020GL089999
, (
2020
).
330.
A. H.
Harvey
, “
Anomaly in the virial expansion of IAPWS-95 at low temperatures
,”
Int. J. Thermophys.
40
,
98
(
2019
).
331.
G.
Benedetto
,
R. M.
Gavioso
,
P. A.
Giuliano Albo
,
S.
Lago
,
D.
Madonna Ripa
, and
R.
Spagnolo
, “
Speed of sound in pure water at temperatures between 274 and 394 K and at pressures up to 90 MPa
,”
Int. J. Thermophys.
26
,
1667
1680
(
2005
).
332.
K.
Meier
and
S.
Kabelac
, “
Speed of sound instrument for fluids with pressures up to 100 MPa
,”
Rev. Sci. Instrum.
77
,
123903
(
2006
).
333.
A.
El Hawary
and
K.
Meier
, “
Highly accurate densities and isobaric and isochoric heat capacities of compressed liquid water derived from new speed of sound measurements
” (unpublished).
334.
F. N.
Fehres
, “
Schallgeschwindigkeitsmessungen in Seewasser bei hohen Drücken
,” Ph.D. dissertation (
Leibniz University Hannover
,
Hannover, Germany
,
2021
).
335.
O.
Bollengier
,
J. M.
Brown
, and
G. H.
Shaw
, “
Thermodynamics of pure liquid water: Sound speed measurements to 700 MPa down to the freezing point, and an equation of state to 2300 MPa from 240 to 500 K
,”
J. Chem. Phys.
151
,
054501
(
2019
).
336.
J.
Troncoso
, “
The isobaric heat capacity of liquid water at low temperatures and high pressures
,”
J. Chem. Phys.
147
,
084501
(
2017
).
337.
L. N.
Dzhavadov
,
V. V.
Brazhkin
,
Y. D.
Fomin
,
V. N.
Ryzhov
, and
E. N.
Tsiok
, “
Experimental study of water thermodynamics up to 1.2 GPa and 473 K
,”
J. Chem. Phys.
152
,
154501
(
2020
).
338.
R.
Romeo
,
P. A.
Giuliano Albo
,
S.
Lorefice
, and
S.
Lago
, “
Density measurements of subcooled water in the temperature range of (243 and 283) K and for pressures up to 400 MPa
,”
J. Chem. Phys.
144
,
074501
(
2016
).
339.
A.
Blahut
,
J.
Hykl
,
P.
Peukert
, and
J.
Hrubý
, “
Dual-capillary dilatometer for density measurements of supercooled water
,”
EPJ Web Conf.
264
,
01004
(
2022
).
340.
E.
Tombari
,
C.
Ferrari
, and
G.
Salvetti
, “
Heat capacity anomaly in a large sample of supercooled water
,”
Chem. Phys. Lett.
300
,
749
751
(
1999
).
341.
International Association for the Properties of Water and Steam, IAPWS ICRN 31, New Thermodynamic Data for Ordinary Water,
2019
.
342.
G. A.
Cisneros
,
K. T.
Wikfeldt
,
L.
Ojamäe
,
J.
Lu
,
Y.
Xu
,
H.
Torabifard
,
A. P.
Bartók
,
G.
Csányi
,
V.
Molinero
, and
F.
Paesani
, “
Modeling molecular interactions in water: From pairwise to many-body potential energy functions
,”
Chem. Rev.
116
,
7501
7528
(
2016
).
343.
O.
Demerdash
,
L.-P.
Wang
, and
T.
Head-Gordon
, “
Advanced models for water simulations
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1355
(
2018
).
344.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
345.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
346.
C.
Vega
and
J. L. F.
Abascal
, “
Simulating water with rigid non-polarizable models: A general perspective
,”
Phys. Chem. Chem. Phys.
13
,
19663
19688
(
2011
).
347.
C.
Vega
, “
Water: One molecule, two surfaces, one mistake
,”
Mol. Phys.
113
,
1145
1163
(
2015
).
348.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
349.
W.
Cencek
,
K.
Szalewicz
,
C.
Leforestier
,
R.
van Harrevelt
, and
A.
van der Avoird
, “
An accurate analytic representation of the water pair potential
,”
Phys. Chem. Chem. Phys.
10
,
4716
4731
(
2008
).
350.
Y.
Wang
,
X.
Huang
,
B. C.
Shepler
,
B. J.
Braams
, and
J. M.
Bowman
, “
Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer
,”
J. Chem. Phys.
134
,
094509
(
2011
).
351.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient
,”
J. Chem. Theory Comput.
9
,
5395
5403
(
2013
).
352.
P.
Jankowski
,
G.
Murdachaew
,
R.
Bukowski
,
O.
Akin-Ojo
,
C.
Leforestier
, and
K.
Szalewicz
, “
Ab initio water pair potential with flexible monomers
,”
J. Phys. Chem. A
119
,
2940
2964
(
2015
).
353.
U.
Góra
,
W.
Cencek
,
R.
Podeszwa
,
A.
van der Avoird
, and
K.
Szalewicz
, “
Predictions for water clusters from a first-principles two- and three-body force field
,”
J. Chem. Phys.
140
,
194101
(
2014
).
354.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers. II: Trimer potential energy surface, third virial coefficient, and small clusters
,”
J. Chem. Theory Comput.
10
,
1599
1607
(
2014
).
355.
Q.
Yu
,
C.
Qu
,
P. L.
Houston
,
R.
Conte
,
A.
Nandi
, and
J. M.
Bowman
, “
q-AQUA: A many-body CCSD(T) water potential, including four-body interactions, demonstrates the quantum nature of water from clusters to the liquid phase
,”
J. Phys. Chem. Lett.
13
,
5068
5074
(
2022
).
356.
M.
Ceriotti
,
W.
Fang
,
P. G.
Kusalik
,
R. H.
McKenzie
,
A.
Michaelides
,
M. A.
Morales
, and
T. E.
Markland
, “
Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges
,”
Chem. Rev.
116
,
7529
7550
(
2016
).
357.
T. E.
Markland
and
M.
Ceriotti
, “
Nuclear quantum effects enter the mainstream
,”
Nat. Rev. Chem.
2
,
0109
(
2018
).
358.
S.
Habershon
,
T. E.
Markland
, and
D. E.
Manolopoulos
, “
Competing quantum effects in the dynamics of a flexible water model
,”
J. Chem. Phys.
131
,
024501
(
2009
).
359.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
, “
Development of a ‘first-principles’ water potential with flexible monomers. III. Liquid phase properties
,”
J. Chem. Theory Comput.
10
,
2906
2910
(
2014
).
360.
I.
Poltavsky
,
V.
Kapil
,
M.
Ceriotti
,
K. S.
Kim
, and
A.
Tkatchenko
, “
Accurate description of nuclear quantum effects with high-order perturbed path integrals (HOPPI)
,”
J. Chem. Theory Comput.
16
,
1128
1135
(
2020
).
361.
A.
Eltareb
,
G. E.
Lopez
, and
N.
Giovambattista
, “
Nuclear quantum effects on the thermodynamic, structural, and dynamical properties of water
,”
Phys. Chem. Chem. Phys.
23
,
6914
6928
(
2021
).
362.
N.
Mauger
,
T.
Plé
,
L.
Lagardère
,
S.
Bonella
,
É.
Mangaud
,
J.-P.
Piquemal
, and
S.
Huppert
, “
Nuclear quantum effects in liquid water at near classical computational cost using the adaptive quantum thermal bath
,”
J. Phys. Chem. Lett.
12
,
8285
8291
(
2021
).
363.
L.
Ruiz Pestana
,
O.
Marsalek
,
T. E.
Markland
, and
T.
Head-Gordon
, “
The quest for accurate liquid water properties from first principles
,”
J. Phys. Chem. Lett.
9
,
5009
5016
(
2018
).
364.
M. D.
LaCount
and
F.
Gygi
, “
Ensemble first-principles molecular dynamics simulations of water using the SCAN meta-GGA density functional
,”
J. Chem. Phys.
151
,
164101
(
2019
).
365.
B.
Cheng
,
E. A.
Engel
,
J.
Behler
,
C.
Dellago
, and
M.
Ceriotti
, “
Ab initio thermodynamics of liquid and solid water
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
1110
1115
(
2019
).
366.
B.
Thomsen
and
M.
Shiga
, “
Ab initio study of nuclear quantum effects on sub- and supercritical water
,”
J. Chem. Phys.
155
,
194107
(
2021
).
367.
A. H.
Harvey
and
E. W.
Lemmon
, “
Correlation for the second virial coefficient of water
,”
J. Phys. Chem. Ref. Data
33
,
369
376
(
2004
).
368.
P. T.
Eubank
,
L. L.
Joffrion
,
M. R.
Patel
, and
W.
Warowny
, “
Experimental densities and virial coefficients for steam from 348 to 498 K with correction for adsorption effects
,”
J. Chem. Thermodyn.
20
,
1009
1034
(
1988
).
369.
W.
Warowny
and
P. T.
Eubank
, “
Generalized equations of the Burnett P–V–T methods for adsorbing gases
,”
Fluid Phase Equilib.
103
,
77
95
(
1995
).
370.
G. K.
Schenter
, “
The development of effective classical potentials and the quantum statistical mechanical second virial coefficient of water
,”
J. Chem. Phys.
117
,
6573
6581
(
2002
).
371.
G.
Garberoglio
,
P.
Jankowski
,
K.
Szalewicz
, and
A. H.
Harvey
, “
Path-integral calculation of the second virial coefficient including intramolecular flexibility effects
,”
J. Chem. Phys.
141
,
044119
(
2014
).
372.
W.
Cencek
,
G.
Garberoglio
,
A. H.
Harvey
,
M. O.
McLinden
, and
K.
Szalewicz
, “
Three-body nonadditive potential for argon with estimated uncertainties and third virial coefficient
,”
J. Phys. Chem. A
117
,
7542
7552
(
2013
).
373.
E. A.
Uehling
and
G. E.
Uhlenbeck
, “
Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I
,”
Phys. Rev.
43
,
552
561
(
1933
).
374.
C. F.
Curtiss
, “
The classical Boltzmann equation of a gas of diatomic molecules
,”
J. Chem. Phys.
75
,
376
378
(
1981
).
375.
C. F.
Curtiss
, “
The classical Boltzmann equation of a molecular gas
,”
J. Chem. Phys.
97
,
1416
1419
(
1992
).
376.
Y.
Kagan
and
L. A.
Maksimov
, “
Kinetic theory of gases with rotational degrees of freedom in an external electric field
,”
Zh. Eksp. Teor. Fiz.
51
,
1893
1908
(
1966
) [Sov. Phys. JETP 24, 1272–1281 (1967)].
377.
Y.
Kagan
and
L. A.
Maksimov
, “
Kinetic theory of gases with rotational degrees of freedom
,”
Zh. Eksp. Teor. Fiz.
60
,
1339
1351
(
1971
) [Sov. Phys. JETP 33, 725–731 (1971)].
378.
L.
Waldmann
, “
Die Boltzmann-Gleichung für Gase mit rotierenden Molekülen
,”
Z. Naturforschg. A
12
,
660
662
(
1957
).
379.
L.
Waldmann
, “
Die Boltzmann-Gleichung für Gase aus Spinteilchen
,”
Z. Naturforschg. A
13
,
609
620
(
1958
).
380.
L.
Waldmann
, “
Transporterscheinungen in Gasen von mittlerem Druck
,” in
Handbuch der Physik, Band XII
, edited by
S.
Flügge
(
Springer
,
Berlin
,
1958
), pp.
295
514
.
381.
R. F.
Snider
, “
Quantum-mechanical modified Boltzmann equation for degenerate internal states
,”
J. Chem. Phys.
32
,
1051
1060
(
1960
).
382.
S.
Chapman
, “
On the law of distribution of molecular velocities, and on the theory of viscosity and thermal conduction, in a non-uniform simple monatomic gas
,”
Philos. Trans. R. Soc., A
216
,
279
348
(
1916
).
383.
D.
Enskog
, “
Kinetische Theorie der Vorgänge in mäßig verdünnten Gasen
,” Ph.D. dissertation (
Uppsala University
,
Uppsala, Sweden
,
1917
).
384.
J. O.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
(
Wiley
,
New York
,
1954
).
385.
S.
Chapman
and
T. G.
Cowling
,
Mathematical Theory of Nonuniform Gases
, 3rd ed. (
Cambridge University Press
,
Cambridge
,
1970
).
386.
J. H.
Ferziger
and
H. G.
Kaper
,
Mathematical Theory of Transport Processes in Gases
(
North-Holland
,
Amsterdam
,
1972
).
387.
F. R. W.
McCourt
,
J. J. M.
Beenakker
,
W. E.
Köhler
, and
I.
Kuščer
,
Nonequilibrium Phenomena in Polyatomic Gases
(
Clarendon
,
Oxford
,
1990
), Vol. 1.
388.
C. F.
Curtiss
, “
Classical, diatomic molecule, kinetic theory cross sections
,”
J. Chem. Phys.
75
,
1341
1346
(
1981
).
389.
A. S.
Dickinson
,
R.
Hellmann
,
E.
Bich
, and
E.
Vogel
, “
Transport properties of asymmetric-top molecules
,”
Phys. Chem. Chem. Phys.
9
,
2836
2843
(
2007
).
390.
R.
Bukowski
,
K.
Szalewicz
,
G. C.
Groenenboom
, and
A.
van der Avoird
, “
Polarizable interaction potential for water from coupled cluster calculations. I. Analysis of dimer potential energy surface
,”
J. Chem. Phys.
128
,
094313
(
2008
).
391.
F. R. W.
McCourt
,
V.
Vesovic
,
W. A.
Wakeham
,
A. S.
Dickinson
, and
M.
Mustafa
, “
Quantum mechanical calculations of effective collision cross-sections for He–N2 interaction. Part I. Viscomagnetic effect
,”
Mol. Phys.
72
,
1347
1364
(
1991
).
392.
V.
Vesovic
,
W. A.
Wakeham
,
A. S.
Dickinson
,
F. R. W.
McCourt
, and
M.
Thachuk
, “
Quantum mechanical calculation of generalized collision cross-sections for the He–N2 interaction. Part II. Thermomagnetic effect
,”
Mol. Phys.
84
,
553
576
(
1995
).
393.
P. J.
Dagdigian
and
M. H.
Alexander
, “
Exact quantum scattering calculations of transport properties for the H2O–H system
,”
J. Chem. Phys.
139
,
194309
(
2013
).
394.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
, 2nd ed. (
Clarendon
,
Oxford
,
2017
).
395.
H. W.
Graben
and
J. R.
Ray
, “
Eight physical systems of thermodynamics, statistical mechanics, and computer simulations
,”
Mol. Phys.
80
,
1183
1193
(
1993
).
396.
E. M.
Pearson
,
T.
Halicioglu
, and
W. A.
Tiller
, “
Laplace-transform technique for deriving thermodynamic equations from the classical microcanonical ensemble
,”
Phys. Rev. A
32
,
3030
3039
(
1985
).
397.
T.
Çaǧin
and
J. R.
Ray
, “
Fundamental treatment of molecular-dynamics ensembles
,”
Phys. Rev. A
37
,
247
251
(
1988
).
398.
J. R.
Ray
and
H.
Zhang
, “
Correct microcanonical ensemble in molecular dynamics
,”
Phys. Rev. E
59
,
4781
4785
(
1999
).
399.
T.
Çaǧin
and
J. R.
Ray
, “
Isothermal molecular-dynamics ensembles
,”
Phys. Rev. A
37
,
4510
4513
(
1988
).
400.
R.
Lustig
, “
Microcanonical Monte Carlo simulation of thermodynamic properties
,”
J. Chem. Phys.
109
,
8816
8828
(
1998
).
401.
R.
Lustig
, “
Thermodynamik molekularer Fluide aus Computersimulationen
,” Habilitationsschrift, RWTH, Aachen, Germany (
1994
).
402.
R.
Lustig
, “
Statistical thermodynamics in the classical molecular dynamics ensemble. I. Fundamentals
,”
J. Chem. Phys.
100
,
3048
3059
(
1994
).
403.
R.
Lustig
, “
Statistical thermodynamics in the classical molecular dynamics ensemble. II. Application to computer simulation
,”
J. Chem. Phys.
100
,
3060
3067
(
1994
).
404.
R.
Lustig
, “
Statistical thermodynamics in the classical molecular dynamics ensemble. III. Numerical results
,”
J. Chem. Phys.
100
,
3068
3078
(
1994
).
405.
R.
Lustig
, “
Direct molecular NVT simulation of the isobaric heat capacity, speed of sound and Joule–Thomson coefficient
,”
Mol. Simul.
37
,
457
465
(
2011
).
406.
R.
Lustig
, “
Statistical analogues for fundamental equation of state derivatives
,”
Mol. Phys.
110
,
3041
3052
(
2012
).
407.
P.
Ströker
,
R.
Hellmann
, and
K.
Meier
, “
Systematic formulation of thermodynamic properties in the NpT ensemble
,”
Phys. Rev. E
103
,
023305
(
2021
).
408.
P.
Ströker
and
K.
Meier
, “
Classical statistical mechanics in the grand canonical ensemble
,”
Phys. Rev. E
104
,
014117
(
2021
).
409.
P.
Ströker
and
K.
Meier
, “
Rigorous expressions for thermodynamic properties in the NpH ensemble
,”
Phys. Rev. E
105
,
035301
(
2022
).
410.
P.
Ströker
and
K.
Meier
, “
Classical statistical mechanics in the adiabatic μVL and μpR ensembles
” (unpublished).
411.
R.
Zwanzig
, “
Time-correlation functions and transport coefficients in statistical mechanics
,”
Annu. Rev. Phys. Chem.
16
,
67
102
(
1965
).
412.
E.
Helfand
, “
Transport coefficients from dissipation in a canonical ensemble
,”
Phys. Rev.
119
,
1
9
(
1960
).
413.
D. J.
Evans
and
G.
Morriss
,
Statistical Mechanics of Nonequlibrium Liquids
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2008
).
414.
W. G.
Hoover
, “
Nonequilibrium molecular dynamics
,”
Annu. Rev. Phys. Chem.
34
,
103
127
(
1983
).
415.
W. G.
Hoover
, “
Atomistic nonequlibrium computer simulations
,”
Physica A
118
,
111
122
(
1983
).
416.
D. J.
Evans
and
G. P.
Morriss
, “
Non-Newtonian molecular dynamics
,”
Comput. Phys. Rep.
1
,
297
343
(
1984
).
417.
B. D.
Todd
and
P. J.
Daivis
, “
Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: Techniques and applications
,”
Mol. Simul.
33
,
189
229
(
2007
).
418.
D. J.
Evans
,
D. J.
Searles
, and
S. R.
Williams
,
Fundamentals of Classical Statistical Mechanics
(
Wiley-VCH
,
Weinheim
,
2016
).
419.
R.
Bukowski
,
K.
Szalewicz
,
G. C.
Groenenboom
, and
A.
van der Avoird
, “
Polarizable interaction potential for water from coupled cluster calculations. II. Applications to dimer spectra, virial coefficients, and simulations of liquid water
,”
J. Chem. Phys.
128
,
094314
(
2008
).
420.
E. M.
Mas
,
R.
Bukowski
, and
K.
Szalewicz
, “
Ab initio three-body interactions for water. I. Potential and structure of water trimer
,”
J. Chem. Phys.
118
,
4386
4403
(
2003
).
421.
M. C.
Muniz
,
T. E.
Gartner
 III
,
M.
Riera
,
C.
Knight
,
S.
Yue
,
F.
Paesani
, and
A. Z.
Panagiotopoulos
, “
Vapor–liquid equilibrium of water with the MB-pol many-body potential
,”
J. Chem. Phys.
154
,
211103
(
2021
).
422.
E. K.
Conway
,
A. A.
Kyuberis
,
O. L.
Polyansky
,
J.
Tennyson
, and
N. F.
Zobov
, “
A highly accurate ab initio dipole moment surface for the ground electronic state of water vapour for spectra extending into the ultraviolet
,”
J. Chem. Phys.
149
,
084307
(
2018
).
423.
T. B.
MacRury
and
W. A.
Steele
, “
Quantum effects on the dielectric virial coefficients of polar gases
,”
J. Chem. Phys.
61
,
3352
3365
(
1974
).
424.
C. G.
Gray
,
K. E.
Gubbins
, and
C. G.
Joslin
,
Theory of Molecular Fluids
, Vol. 2: Applications (
Oxford University Press
,
Oxford
,
2011
).
425.
G.
Garberoglio
and
A. H.
Harvey
, “
Path-integral calculation of the second dielectric and refractivity virial coefficients of helium, neon, and argon
,”
J. Res. Natl. Inst. Stand. Technol.
125
,
125022
(
2020
).
426.
S.
Yang
,
A. J.
Schultz
, and
D. A.
Kofke
, “
Evaluation of second and third dielectric virial coefficients for non-polarisable molecular models
,”
Mol. Phys.
115
,
991
1003
(
2017
).
427.
A. J.
Stone
,
Y.
Tantirungrotechai
, and
A. D.
Buckingham
, “
The dielectric virial coefficient and model intermolecular potentials
,”
Phys. Chem. Chem. Phys.
2
,
429
434
(
2000
).
428.
D.
Pan
,
L.
Spanu
,
B.
Harrison
,
D. A.
Sverjensky
, and
G.
Galli
, “
Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
6646
6650
(
2013
).
429.
K.
Miyagawa
and
P. G.
Hill
, “
A tabular Taylor series expansion method for fast calculation of steam properties
,”
J. Eng. Gas Turbines Power
119
,
485
491
(
1997
).
430.
K.
Miyagawa
and
P. G.
Hill
, “
Rapid and accurate calculation of water and steam properties using the tabular Taylor series expansion method
,”
J. Eng. Gas Turbines Power
123
,
707
712
(
2001
).
431.
International Association for the Properties of Water and Steam, IAPWS G6-03, Guideline on the Tabular Taylor Series Expansion (TTSE) Method for Calculation of Thermodynamic Properties of Water and Steam Applied to IAPWS-95 as an Example,
2003
.
432.
M.
Kunick
,
Fast Calculation of Thermophysical Properties in Extensive Process Simulations with the Spline-Based Table Look-Up Method (SBTL)
, Fortschr.-Ber. VDI Reihe 6 Nr. 618 (
VDI-Verlag
,
Düsseldorf
,
2018
).
433.
International Association for the Properties of Water and Steam, IAPWS G13-15, Guideline on the Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL),
2015
.
434.
M.
Kunick
,
R. A.
Berry
,
R. C.
Martineau
,
H.-J.
Kretzschmar
, and
U.
Gampe
, “
Application of the new IAPWS Guideline on the fast and accurate calculation of steam and water properties with the spline-based table look-up method (SBTL) in RELAP-7
,”
Kerntechnik
82
,
264
279
(
2017
).
435.
P.
Post
,
B.
Winhart
, and
F.
di Mare
, “
Large eddy simulation of a condensing wet steam turbine cascade
,”
J. Eng. Gas Turbines Power
143
,
021016
(
2021
).
436.
J. M.
Brown
, “
Local basis function representations of thermodynamic surfaces: Water at high pressure and temperature as an example
,”
Fluid Phase Equilib.
463
,
18
31
(
2018
).
437.
R.
Feistel
and
G. M.
Marion
, “
A Gibbs–Pitzer function for high-salinity seawater thermodynamics
,”
Prog. Oceanogr.
74
,
515
539
(
2007
).
438.
H.
Sun
,
R.
Feistel
,
M.
Koch
, and
A.
Markoe
, “
New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid
,”
Deep Sea Res., Part I
55
,
1304
1310
(
2008
).
439.
R.
Feistel
, “
Extended equation of state for seawater at elevated temperature and salinity
,”
Desalination
250
,
14
18
(
2010
).
440.
J.
Safarov
,
S.
Berndt
,
F.
Millero
,
R.
Feistel
,
A.
Heintz
, and
E.
Hassel
, “
(p, ρ, T) properties of seawater: Extensions to high salinities
,”
Deep Sea Res., Part I
65
,
146
156
(
2012
).
441.
J.
Safarov
,
S.
Berndt
,
F. J.
Millero
,
R.
Feistel
,
A.
Heintz
, and
E. P.
Hassel
, “
(p, ρ, T) properties of seawater at brackish salinities: Extensions to high temperatures and pressures
,”
Deep Sea Res., Part I
78
,
95
101
(
2013
).
442.
F. J.
Millero
and
F.
Huang
, “
The compressibility of seawater from 0 to 95°C at 1 atm
,”
Mar. Chem.
126
,
149
154
(
2011
).
443.
S.
Lago
,
P. A.
Giuliano Albo
,
C.
von Rohden
, and
S.
Rudtsch
, “
Speed of sound measurements in North Atlantic seawater and IAPSO Standard Seawater up to 70 MPa
,”
Mar. Chem.
177
,
662
667
(
2015
).
444.
R. J.
Woosley
,
F.
Huang
, and
F. J.
Millero
, “
Estimating absolute salinity (SA) in the world’s oceans using density and composition
,”
Deep Sea Res., Part I
93
,
14
20
(
2014
).
445.
G. T.
Budéus
, “
Potential bias in TEOS10 density of sea water samples
,”
Deep Sea Res., Part I
134
,
41
47
(
2018
).
446.
S.
Weinreben
and
R.
Feistel
, “
Anomalous salinity-density relations of seawater in the eastern central Atlantic
,”
Deep Sea Res., Part I
154
,
103160
(
2019
).
447.
H.
Schmidt
,
H.
Wolf
, and
E.
Hassel
, “
A method to measure the density of seawater accurately to the level of 10−6
,”
Metrologia
53
,
770
786
(
2016
).
448.
H.
Schmidt
,
S.
Seitz
,
E.
Hassel
, and
H.
Wolf
, “
The density–salinity relation of standard seawater
,”
Ocean Sci.
14
,
15
40
(
2018
).
449.
R.
Pawlowicz
and
R.
Feistel
, “
Limnological applications of the thermodynamic equation of seawater 2010 (TEOS-10)
,”
Limnol. Oceanogr.: Methods
10
,
853
867
(
2012
).
450.
M.
Budt
,
D.
Wolf
,
R.
Span
, and
J.
Yan
, “
A review on compressed air energy storage: Basic principles, past milestones and recent developments
,”
Appl. Energy
170
,
250
268
(
2016
).
451.
Q.
Yu
,
Q.
Wang
,
X.
Tan
,
G.
Fang
, and
J.
Meng
, “
A review of compressed-air energy storage
,”
J. Renewable Sustainable Energy
11
,
042702
(
2019
).
452.
E. W.
Lemmon
,
R. T.
Jacobsen
,
S. G.
Penoncello
, and
D. G.
Friend
, “
Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa
,”
J. Phys. Chem. Ref. Data
29
,
331
385
(
2000
).
453.
R.
Fernández-Prini
,
J. L.
Alvarez
, and
A. H.
Harvey
, “
Henry’s constants and vapor–liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures
,”
J. Phys. Chem. Ref. Data
32
,
903
916
(
2003
).
454.
International Association for the Properties of Water and Steam, IAPWS G7-04, Guideline on the Henry’s Constant and Vapor-Liquid Distribution Constant for Gases in H2O and D2O at High Temperatures,
2004
.
455.
A. H.
Harvey
, “
Accuracy of approximations to the Poynting correction for ice and liquid water
,”
J. Res. Natl. Inst. Stand. Technol.
122
,
41
(
2017
).
456.
R.
Hellmann
, “
Reference values for the cross second virial coefficients and dilute gas binary diffusion coefficients of the systems (H2O + O2) and (H2O + air) from first principles
,”
J. Chem. Eng. Data
65
,
4130
4141
(
2020
).
457.
S.
Herrmann
,
H.-J.
Kretzschmar
, and
D. P.
Gatley
, “
Thermodynamic properties of real moist air, dry air, steam, water, and ice (RP-1485)
,”
HVACR Res.
15
,
961
986
(
2009
).
458.
R.
Feistel
,
J. W.
Lovell-Smith
, and
O.
Hellmuth
, “
Virial approximation of the TEOS-10 equation for the fugacity of water in humid air
,”
Int. J. Thermophys.
36
,
44
68
(
2015
).
459.
International Association for the Properties of Water and Steam, IAPWS G8-10, Guideline on an Equation of State for Humid Air in Contact with Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater,
2010
.
460.
I. H.
Bell
,
E. W.
Lemmon
, and
A. H.
Harvey
, “