Atomic spectroscopy and atomic physics papers represent a significant part of publications in Journal of Physical and Chemical Reference Data (JPCRD). Critical compilations of spectroscopic data, accurate calculations of collisional parameters, and bibliography on spectral line profiles and shifts provided much needed information for plasma physics, astrophysics, lithography, fusion research, and other fields of science. We present a brief overview of the atomic physics research published in JPCRD over its first 50 years.

7.
1.
C. E.
Moore
, “
Atomic energy levels as derived from the analysis of optical spectra—Hydrogen through vanadium
,” in National Standard Reference Data Series, NSRDS-NBS 35, Reprint of NBS Circular 467, Vol. I, 1949, National Bureau of Standards, U.S.,
1971
, .
2.
C. E.
Moore
, “
Atomic energy levels as derived from the analysis of optical spectra—Chromium through niobium
,” in National Standard Reference Data Series, NSRDS-NBS 35, Reprint of NBS Circular 467, Vol. II, 1952, National Bureau of Standards, U.S.,
1971
, .
3.
C. E.
Moore
, “
Atomic energy levels as derived from the analysis of optical spectra—Molybdenum through lanthanum and hafnium through actinium
,” in National Standard Reference Data Series 35, Reprint of NBS Circular 467, Vol. III, 1958, National Bureau of Standards, U.S.,
1971
, .
4.
A.
Kramida
, “
Critical evaluation of data on atomic energy levels, wavelengths, and transition probabilities
,”
Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, Daejeon, South Korea, September 04–07, 2012
[Fusion Sci. Technol.
63
,
313
323
(
2013
)].
5.
W. C.
Martin
, “
Energy levels of neutral helium (4He I)
,”
J. Phys. Chem. Ref. Data
2
,
257
266
(
1973
).
6.
M. W.
Smith
and
W. L.
Wiese
, “
Atomic transition probabilities for forbidden lines of the iron group elements: (a critical data compilation for selected lines)
,”
J. Phys. Chem. Ref. Data
2
,
85
120
(
1973
).
7.
W.
Grotrian
, “
Zur frage der deutung der linien im spektrum der sonnenkorona
,”
Naturwissenschaften
27
,
214
(
1939
).
8.
B.
Edlén
, “
Die deutung der emissionslinien im spektrum der sonnenkorona. Mit 6 abbildungen
,”
Z. Astrophys.
22
,
30
(
1943
).
9.
J.
Reader
and
J.
Sugar
, “
Energy levels of iron, Fe I through Fe XXVI
,”
J. Phys. Chem. Ref. Data
4
,
353
440
(
1975
).
10.
C.
Corliss
and
J.
Sugar
, “
Energy levels of iron, Fe I through Fe XXVI
,”
J. Phys. Chem. Ref. Data
11
,
135
241
(
1982
).
11.
J.
Sugar
and
C.
Corliss
, “
Energy levels of chromium, Cr I through Cr XXIV
,”
J. Phys. Chem. Ref. Data
6
,
317
384
(
1977
).
12.
T.
Shirai
,
Y.
Nakai
,
T.
Nakagaki
,
J.
Sugar
, and
W. L.
Wiese
, “
Spectral data and grotrian diagrams for highly ionized chromium, Cr v through Cr XXIV
,”
J. Phys. Chem. Ref. Data
22
,
1279
1423
(
1993
).
13.
C.
Corliss
and
J.
Sugar
, “
Energy levels of manganese, Mn I through Mn XXV
,”
J. Phys. Chem. Ref. Data
6
,
1253
1329
(
1977
).
14.
T.
Shirai
,
T.
Nakagaki
,
K.
Okazaki
,
J.
Sugar
, and
W. L.
Wiese
, “
Spectral data and grotrian diagrams for highly ionized manganese, Mn VII through Mn XXV
,”
J. Phys. Chem. Ref. Data
23
,
179
294
(
1994
).
15.
J.
Sugar
and
C.
Corliss
, “
Energy levels of vanadium, V I through V XXIII
,”
J. Phys. Chem. Ref. Data
7
,
1191
1262
(
1978
).
16.
T.
Shirai
,
T.
Nakagaki
,
J.
Sugar
, and
W. L.
Wiese
, “
Spectral data and grotrian diagrams for highly ionized vanadium, V VI through V XXIII
,”
J. Phys. Chem. Ref. Data
21
,
273
390
(
1992
).
17.
C.
Corliss
and
J.
Sugar
, “
Energy levels of titanium, Ti I through Ti XXII
,”
J. Phys. Chem. Ref. Data
8
,
1
62
(
1979
).
18.
E. B.
Saloman
, “
Energy levels and observed spectral lines of neutral and singly ionized titanium, Ti I and Ti II
,”
J. Phys. Chem. Ref. Data
41
,
013101
(
2012
).
19.
J.
Sugar
and
C.
Corliss
, “
Energy levels of scandium, Sc I through Sc XXI
,”
J. Phys. Chem. Ref. Data
9
,
473
512
(
1980
).
20.
V.
Kaufman
and
J.
Sugar
, “
Wavelengths and energy level classifications of scandium spectra for all stages of ionization
,”
J. Phys. Chem. Ref. Data
17
,
1679
1789
(
1988
).
21.
C.
Corliss
and
J.
Sugar
, “
Energy levels of nickel, Ni I through Ni XXVIII
,”
J. Phys. Chem. Ref. Data
10
,
197
290
(
1981
).
22.
J.
Sugar
and
C.
Corliss
, “
Energy levels of cobalt, Co I through Co XXVII
,”
J. Phys. Chem. Ref. Data
10
,
1097
1174
(
1981
).
23.
T.
Shirai
,
A.
Mengoni
,
Y.
Nakai
,
J.
Sugar
,
W. L.
Wiese
,
K.
Mori
, and
H.
Sakai
, “
Spectral data and grotrian diagrams for highly ionized cobalt, Co VIII through Co XXVII
,”
J. Phys. Chem. Ref. Data
21
,
23
121
(
1992
).
24.
J.
Sugar
and
C.
Corliss
, “
Atomic energy levels of the iron-period elements: Potassium through nickel
,”
J. Phys. Chem. Ref. Data
14
(
Suppl. 2
),
664
(
1985
).
25.
W. L.
Wiese
and
J. R.
Fuhr
, “
Atomic transition probabilities for scandium and titanium (a critical data compilation of allowed lines)
,”
J. Phys. Chem. Ref. Data
4
,
263
352
(
1975
).
26.
S. M.
Younger
,
J. R.
Fuhr
,
G. A.
Martin
, and
W. L.
Wiese
, “
Atomic transition probabilities for vanadium, chromium, and manganese (a critical data compilation of allowed lines)
,”
J. Phys. Chem. Ref. Data
7
,
495
629
(
1978
).
27.
E. B.
Saloman
, “
Energy levels and observed spectral lines of neutral and singly ionized chromium, Cr I and Cr II
,”
J. Phys. Chem. Ref. Data
41
,
043103
(
2012
).
28.
J. R.
Fuhr
,
G. A.
Martin
,
W. L.
Wiese
, and
S. M.
Younger
, “
Atomic transition probabilities for iron, cobalt, and nickel (a critical data compilation of allowed lines)
,”
J. Phys. Chem. Ref. Data
10
,
305
566
(
1981
).
29.
J. R.
Fuhr
and
W. L.
Wiese
, “
A critical compilation of atomic transition probabilities for neutral and singly ionized iron
,”
J. Phys. Chem. Ref. Data
35
,
1669
1809
(
2006
).
30.
T.
Shirai
,
Y.
Funatake
,
K.
Mori
,
J.
Sugar
,
W. L.
Wiese
, and
Y.
Nakai
, “
Spectral data and grotrian diagrams for highly ionized iron, Fe VIII-XXVI
,”
J. Phys. Chem. Ref. Data
19
,
127
275
(
1990
).
31.
G. A.
Martin
,
J. R.
Fuhr
, and
W. L.
Wiese
, “
Atomic transition probabilites: Scandium through manganese
,”
J. Phys. Chem. Ref. Data
17
(
Suppl. 3
),
523
(
1988
).
32.
G. A.
Martin
,
J. R.
Fuhr
, and
W. L.
Wiese
, “
Atomic transition probabilites: Iron through nickel
,”
J. Phys. Chem. Ref. Data
17
(
Suppl. 4
),
504
(
1988
).
33.
T.
Shirai
,
Y.
Nakai
,
K.
Ozawa
,
K.
Ishii
,
J.
Sugar
, and
K.
Mori
, “
Spectral data for molybdenum ions, Mo VI–Mo XLII
,”
J. Phys. Chem. Ref. Data
16
,
327
377
(
1987
).
34.
J.
Sugar
and
A.
Musgrove
, “
Energy levels of molybdenum, Mo I through Mo XLII
,”
J. Phys. Chem. Ref. Data
17
,
155
239
(
1988
).
35.
T.
Shirai
,
J.
Sugar
,
A.
Musgrove
, and
W.
Wiese
, “
Spectral data for highly ionized atoms: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Kr, and Mo
,”
J. Phys. Chem. Ref. Data Mon.
8
(
2000
).
36.
A.
Kramida
and
W. C.
Martin
, “
A compilation of energy levels and wavelengths for the spectrum of neutral beryllium (Be I)
,”
J. Phys. Chem. Ref. Data
26
,
1185
1194
(
1997
).
37.
J. R.
Fuhr
and
W. L.
Wiese
, “
Tables of atomic transition probabilities for beryllium and boron
,”
J. Phys. Chem. Ref. Data
39
,
013101
(
2010
).
38.
S.
Nasiri
,
L.
Adamowicz
, and
S.
Bubin
, “
Benchmark calculations of the energy spectra and oscillator strengths of the beryllium atom
,”
J. Phys. Chem. Ref. Data
50
,
043107
(
2021
).
39.
A. E.
Kramida
and
T.
Shirai
, “
Compilation of wavelengths, energy levels, and transition probabilities for W I and W II
,”
J. Phys. Chem. Ref. Data
35
,
423
683
(
2006
).
40.
W. C.
Martin
and
R.
Zalubas
, “
Energy levels of aluminum, Al I through Al XIII
,”
J. Phys. Chem. Ref. Data
8
,
817
864
(
1979
).
41.
V.
Kaufman
and
W. C.
Martin
, “
Wavelengths and energy level classifications for the spectra of aluminum (Al I through Al XIII)
,”
J. Phys. Chem. Ref. Data
20
,
775
858
(
1991
).
42.
J.
Sugar
and
C.
Corliss
, “
Energy levels of calcium, Ca I through Ca XX
,”
J. Phys. Chem. Ref. Data
8
,
865
916
(
1979
).
43.
C.
Corliss
and
J.
Sugar
, “
Energy levels of potassium, K I through K XIX
,”
J. Phys. Chem. Ref. Data
8
,
1109
1146
(
1979
).
44.
J. E.
Sansonetti
, “
Wavelengths, transition probabilities, and energy levels for the spectra of potassium (K I through K XIX)
,”
J. Phys. Chem. Ref. Data
37
,
7
96
(
2008
).
45.
W. C.
Martin
and
R.
Zalubas
, “
Energy levels of magnesium, Mg I through Mg XII
,”
J. Phys. Chem. Ref. Data
9
,
1
58
(
1980
).
46.
V.
Kaufman
and
W. C.
Martin
, “
Wavelengths and energy level classifications of magnesium spectra for all stages of ionization (Mg I through Mg XII)
,”
J. Phys. Chem. Ref. Data
20
,
83
152
(
1991
).
47.
W. C.
Martin
and
R.
Zalubas
, “
Energy levels of sodium Na I through Na XI
,”
J. Phys. Chem. Ref. Data
10
,
153
196
(
1981
).
48.
W. C.
Martin
and
R.
Zalubas
, “
Energy levels of silicon, Si I through Si XIV
,”
J. Phys. Chem. Ref. Data
12
,
323
380
(
1983
).
49.
W. C.
Martin
,
R.
Zalubas
, and
A.
Musgrove
, “
Energy levels of phosphorus, P I through P XV
,”
J. Phys. Chem. Ref. Data
14
,
751
802
(
1985
).
50.
W. C.
Martin
,
R.
Zalubas
, and
A.
Musgrove
, “
Energy levels of sulfur, S I through S XVI
,”
J. Phys. Chem. Ref. Data
19
,
821
880
(
1990
).
51.
V.
Kaufman
and
W. C.
Martin
, “
Wavelengths and energy level classifications for the spectra of sulfur (S I through S XVI)
,”
J. Phys. Chem. Ref. Data
22
,
279
375
(
1993
).
52.
J.
Sugar
and
A.
Musgrove
, “
Energy levels of copper, Cu I through Cu XXIX
,”
J. Phys. Chem. Ref. Data
19
,
527
616
(
1990
).
53.
T.
Shirai
,
T.
Nakagaki
,
Y.
Nakai
,
J.
Sugar
,
K.
Ishii
, and
K.
Mori
, “
Spectral data and grotrian diagrams for highly ionized copper, Cu X–Cu XXIX
,”
J. Phys. Chem. Ref. Data
20
,
1
81
(
1991
).
54.
W. C.
Martin
,
V.
Kaufman
, and
A.
Musgrove
, “
A compilation of energy levels and wavelengths for the spectrum of singly-ionized oxygen (O II)
,”
J. Phys. Chem. Ref. Data
22
,
1179
1212
(
1993
).
55.
J.
Sugar
and
A.
Musgrove
, “
Energy levels of zinc, Zn I through Zn XXX
,”
J. Phys. Chem. Ref. Data
24
,
1803
1872
(
1995
).
56.
E. B.
Saloman
and
C. J.
Sansonetti
, “
Wavelengths, energy level classifications, and energy levels for the spectrum of neutral neon
,”
J. Phys. Chem. Ref. Data
33
,
1113
1158
(
2004
).
57.
E. B.
Saloman
, “
Energy levels and observed spectral lines of ionized argon, Ar II through Ar XVIII
,”
J. Phys. Chem. Ref. Data
39
,
033101
(
2010
),
58.
J. E.
Sansonetti
, “
Wavelengths, transition probabilities, and energy levels for the spectra of sodium (Na I–Na XI)
,”
J. Phys. Chem. Ref. Data
37
,
1659
1763
(
2008
).
59.
V.
Vujnović
and
W. L.
Wiese
, “
A critical compilation of atomic transition probabilities for singly ionized argon
,”
J. Phys. Chem. Ref. Data
21
,
919
939
(
1992
).
60.
W.
Wiese
,
J.
Fuhr
, and
T.
Deters
, “
Atomic transition probabilities of carbon, nitrogen, and oxygen—A critical data compilation
,”
J. Phys. Chem. Ref. Data Mon.
7
(
1996
).
61.
W. L.
Wiese
and
J. R.
Fuhr
, “
Improved critical compilations of selected atomic transition probabilities for neutral and singly ionized carbon and nitrogen
,”
J. Phys. Chem. Ref. Data
36
,
1287
1345
(
2007
).
62.
W. L.
Wiese
and
J. R.
Fuhr
, “
Accurate atomic transition probabilities for hydrogen, helium, and lithium
,”
J. Phys. Chem. Ref. Data
38
,
565
720
(
2009
).
63.
L. I.
Podobedova
,
A.
Musgrove
,
D. E.
Kelleher
,
J.
Reader
, and
W. L.
Wiese
, “
Atomic spectral tables for the Chandra X-ray observatory. Part I S VIII–S XIV
,”
J. Phys. Chem. Ref. Data
32
,
1367
1386
(
2003
).
64.
L. I.
Podobedova
,
D. E.
Kelleher
,
J.
Reader
, and
W. L.
Wiese
, “
Atomic spectral tables for the Chandra X-ray observatory. Part II. Si VI–Si XII
,”
J. Phys. Chem. Ref. Data
33
,
471
494
(
2004
).
65.
L. I.
Podobedova
,
D. E.
Kelleher
,
J.
Reader
, and
W. L.
Wiese
, “
Atomic spectral tables for the Chandra X-ray observatory. Part III. Mg V–Mg X
,”
J. Phys. Chem. Ref. Data
33
,
495
524
(
2004
).
66.
L. I.
Podobedova
,
J. R.
Fuhr
,
J.
Reader
, and
W. L.
Wiese
, “
Atomic spectral tables for the Chandra X-ray observatory. Part IV. Ne V–Ne VIII
,”
J. Phys. Chem. Ref. Data
33
,
525
540
(
2004
).
67.
D. E.
Kelleher
and
L. I.
Podobedova
, “
Atomic transition probabilities of sodium and magnesium. A critical compilation
,”
J. Phys. Chem. Ref. Data
37
,
267
706
(
2008
).
68.
D. E.
Kelleher
and
L. I.
Podobedova
, “
Atomic transition probabilities of aluminum. A critical compilation
,”
J. Phys. Chem. Ref. Data
37
,
709
911
(
2008
).
69.
D. E.
Kelleher
and
L. I.
Podobedova
, “
Atomic transition probabilities of silicon. A critical compilation
,”
J. Phys. Chem. Ref. Data
37
,
1285
1501
(
2008
).
70.
L. I.
Podobedova
,
D. E.
Kelleher
, and
W. L.
Wiese
, “
Critically evaluated atomic transition probabilities for sulfur S I–S XV
,”
J. Phys. Chem. Ref. Data
38
,
171
439
(
2009
).
71.
J.
Sugar
and
A.
Musgrove
, “
Energy levels of krypton, Kr I through Kr XXXVI
,”
J. Phys. Chem. Ref. Data
20
,
859
915
(
1991
).
72.
T.
Shirai
,
K.
Okazaki
, and
J.
Sugar
, “
Spectral data for highly ionized krypton, Kr V through Kr XXXVI
,”
J. Phys. Chem. Ref. Data
24
,
1577
1608
(
1995
).
73.
E. B.
Saloman
, “
Energy levels and observed spectral lines of krypton, Kr I through Kr XXXVI
,”
J. Phys. Chem. Ref. Data
36
,
215
386
(
2007
).
74.
C. J.
Humphreys
, “
First spectra of neon, argon, and xenon 136 in the 1.2–4.0 μm region
,”
J. Phys. Chem. Ref. Data
2
,
519
530
(
1973
).
75.
E. B.
Saloman
, “
Energy levels and observed spectral lines of xenon, Xe I through Xe LIV
,”
J. Phys. Chem. Ref. Data
33
,
765
921
(
2004
).
76.
J. Z.
Klose
,
J. R.
Fuhr
, and
W. L.
Wiese
, “
Critically evaluated atomic transition probabilities for Ba I and Ba II
,”
J. Phys. Chem. Ref. Data
31
,
217
230
(
2002
).
77.
J. J.
Curry
, “
Compilation of wavelengths, energy levels, and transition probabilities for Ba I and Ba II
,”
J. Phys. Chem. Ref. Data
33
,
725
746
(
2004
).
78.
J. E.
Sansonetti
and
J. J.
Curry
, “
Wavelengths, transition probabilities, and energy levels for the spectra of barium (Ba III through Ba LVI)
,”
J. Phys. Chem. Ref. Data
39
,
043103
(
2010
).
79.
W. C.
Martin
,
L.
Hagan
,
J.
Reader
, and
J.
Sugar
, “
Ground levels and ionization potentials for lanthanide and actinide atoms and ions
,”
J. Phys. Chem. Ref. Data
3
,
771
780
(
1974
).
80.
H.
Hotop
and
W. C.
Lineberger
, “
Binding energies in atomic negative ions
,”
J. Phys. Chem. Ref. Data
4
,
539
576
(
1975
).
81.
H.
Hotop
and
W. C.
Lineberger
, “
Binding energies in atomic negative ions: II
,”
J. Phys. Chem. Ref. Data
14
,
731
750
(
1985
).
82.
T.
Andersen
,
H. K.
Haugen
, and
H.
Hotop
, “
Binding energies in atomic negative ions: III
,”
J. Phys. Chem. Ref. Data
28
,
1511
1533
(
1999
).
83.
J. E.
Sansonetti
, “
Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (Rb I through Rb XXXVII)
,”
J. Phys. Chem. Ref. Data
35
,
301
421
(
2006
).
84.
E. B.
Saloman
, “
Wavelengths, energy level classifications, and energy levels for the spectrum of neutral mercury
,”
J. Phys. Chem. Ref. Data
35
,
1519
1548
(
2006
).
85.
J. E.
Sansonetti
, “
Spectroscopic data for neutral francium (Fr I)
,”
J. Phys. Chem. Ref. Data
36
,
497
507
(
2007
).
86.
J. E.
Sansonetti
, “
Wavelengths, transition probabilities, and energy levels for the spectra of cesium (Cs I–Cs LV)
,”
J. Phys. Chem. Ref. Data
38
,
761
923
(
2009
).
87.
J. E.
Sansonetti
and
G.
Nave
, “
Wavelengths, transition probabilities, and energy levels for the spectrum of neutral strontium (Sr I)
,”
J. Phys. Chem. Ref. Data
39
,
033103
(
2010
).
88.
J. E.
Sansonetti
, “
Wavelengths, transition probabilities, and energy levels for the spectra of strontium ions (Sr II through Sr XXXVIII)
,”
J. Phys. Chem. Ref. Data
41
,
013102
(
2012
).
89.
J.
Sugar
and
A.
Musgrove
, “
Energy levels of germanium, Ge I through Ge XXXII
,”
J. Phys. Chem. Ref. Data
22
,
1213
1278
(
1993
).
90.
T.
Shirai
,
J.
Reader
,
A. E.
Kramida
, and
J.
Sugar
, “
Spectral data for gallium: Ga I through Ga XXXI
,”
J. Phys. Chem. Ref. Data
36
,
509
615
(
2007
).
91.
V.
Kaufman
and
B.
Edlén
, “
Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å
,”
J. Phys. Chem. Ref. Data
3
,
825
895
(
1974
).
92.
G. A.
Martin
and
W. L.
Wiese
, “
Tables of critically evaluated oscillator strengths for the lithium isoelectronic sequence
,”
J. Phys. Chem. Ref. Data
5
,
537
570
(
1976
).
93.
V.
Kaufman
and
J.
Sugar
, “
Forbidden lines in ns2npk ground configurations and nsnp excited configurations of beryllium through molybdenum atoms and ions
,”
J. Phys. Chem. Ref. Data
15
,
321
426
(
1986
).
94.
J. E.
Sansonetti
and
W. C.
Martin
, “
Handbook of basic atomic spectroscopic data
,”
J. Phys. Chem. Ref. Data
34
,
1559
2259
(
2005
).
95.
J.
Sansonetti
,
W.
Olsen
, and
S.
Young
, Handbook of Basic Atomic Spectroscopic Data, available at https://physics.nist.gov/Handbook, January 1, 2022,
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2005
.
96.
A.
Kramida
,
Yu.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database (ver. 5.9), available at https://physics.nist.gov/asd, January 1, 2022,
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2021
, .
97.
A.
Kramida
,
K.
Olsen
, and
Yu.
Ralchenko
, NIST LIBS Database, available at https://physics.nist.gov/PhysRefData/ASD/LIBS/libs-form.html, January 1, 2022,
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2021
.
98.
H.-K.
Chung
,
M. H.
Chen
,
W. L.
Morgan
,
Yu.
Ralchenko
, and
R. W.
Lee
, “
FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements
,”
High Energy Density Phys.
1
,
3
12
(
2005
).
99.
K.
Olsen
,
C.
Fontes
,
C.
Fryer
,
A.
Hungerford
,
R.
Wollaeger
,
O.
Korobkin
, and
Yu.
Ralchenko
, NIST-LANL Lanthanide Opacity Database, available at https://nlte.nist.gov/OPAC, January 1, 2022,
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2021
.
100.
Yu.
Ralchenko
and
A.
Kramida
, “
Development of NIST atomic databases and online tools
,”
Atoms
8
,
56
(
2020
).
101.
M. O.
Krause
, “
Atomic radiative and radiationless yields for K and L shells
,”
J. Phys. Chem. Ref. Data
8
,
307
327
(
1979
).
102.
M. O.
Krause
and
J. H.
Oliver
, “
Natural widths of atomic K-levels and L-levels, K-alpha X-ray-lines and several KLL Auger lines
,”
J. Phys. Chem. Ref. Data
8
,
329
338
(
1979
).
103.
G. W.
Erickson
, “
Energy levels of one-electron atoms
,”
J. Phys. Chem. Ref. Data
6
,
831
870
(
1977
).
104.
R. L.
Kelly
, “
Atomic and ionic spectrum lines below 2000 angstroms. Hydrogen through krypton
,”
J. Phys. Chem. Ref. Data
16
(Suppl. 1) (
1987
).
105.
M.
Outred
, “
Tables of atomic spectral lines for the 10000 Å to 40000 Å region
,”
J. Phys. Chem. Ref. Data
7
,
1
262
(
1978
).
106.
F. T.
Porter
and
M. S.
Freedman
, “
Recommended atomic electron binding energies, 1s to 6p3/2, for the heavy elements, Z = 84 to 103
,”
J. Phys. Chem. Ref. Data
7
,
1267
1284
(
1978
).
107.
G. A.
Odintzova
and
A. R.
Striganov
, “
The spectrum and energy levels of the neutral atom of boron (B I)
,”
J. Phys. Chem. Ref. Data
8
,
63
68
(
1979
).
108.
S. G.
Karshenboim
,
E. Y.
Korzinin
,
V. A.
Shelyuto
, and
V. G.
Ivanov
, “
Theory of Lamb shift in muonic hydrogen
,”
J. Phys. Chem. Ref. Data
44
,
031202
(
2015
).
109.
V. M.
Shabaev
,
D. A.
Glazov
,
G.
Plunien
, and
A. V.
Volotka
, “
Theory of bound-electron g factor in highly charged ions
,”
J. Phys. Chem. Ref. Data
44
,
031205
(
2015
).
110.
K.
Pachucki
and
V. A.
Yerokhin
, “
Theory of the helium isotope shift
,”
J. Phys. Chem. Ref. Data
44
,
031206
(
2015
).
111.
V. A.
Yerokhin
and
A.
Surzhykov
, “
Theoretical energy levels of 1sns and 1snp states of helium-like ions
,”
J. Phys. Chem. Ref. Data
48
,
033104
(
2019
).
112.
A.
Marsman
,
M.
Horbatsch
, and
E. A.
Hessels
, “
The effect of quantum-mechanical interference on precise measurements of the n = 2 triplet P fine structure of helium
,”
J. Phys. Chem. Ref. Data
44
,
031207
(
2015
).
113.
V. A.
Yerokhin
and
V. M.
Shabaev
, “
Lamb shift of n = 1 and n = 2 states of hydrogen-like atoms, 1 ≤ Z ≤ 110
,”
J. Phys. Chem. Ref. Data
44
,
033103
(
2015
).
114.
U.
Dammalapati
,
K.
Jungmann
, and
L.
Willmann
, “
Compilation of spectroscopic data of radium (Ra I and Ra II)
,”
J. Phys. Chem. Ref. Data
45
,
013101
(
2016
).
115.
D. A.
Johnson
and
P. G.
Nelson
, “
Lanthanide ionization energies and the sub-shell break. Part 1. The second ionization energies
,”
J. Phys. Chem. Ref. Data
46
,
013108
(
2017
).
116.
D. A.
Johnson
and
P. G.
Nelson
, “
Lanthanide ionization energies and the sub-shell break. Part 2. The third and fourth ionization energies
,”
J. Phys. Chem. Ref. Data
46
,
013109
(
2017
).
117.
E. S.
Chang
, “
Energy levels of atomic aluminum with hyperfine structure
,”
J. Phys. Chem. Ref. Data
19
,
119
125
(
1990
).
118.
J. H.
Hubbell
,
P. N.
Trehan
,
N.
Singh
,
B.
Chand
,
D.
Mehta
,
M. L.
Garg
,
R. R.
Garg
,
S.
Singh
, and
S.
Puri
, “
A review, bibliography, and tabulation of K, L, and higher atomic shell X-ray fluorescence yields
,”
J. Phys. Chem. Ref. Data
23
,
339
364
(
1994
).
119.
D.
Ma
,
N.
Zheng
, and
J.
Fan
, “
Theoretical Analysis on 3dnl J = 1e–5e Autoionizing Levels in Ca
,”
J. Phys. Chem. Ref. Data
33
,
1013
1030
(
2004
).
120.
O.
Jitrik
and
C. F.
Bunge
, “
Transition probabilities for hydrogen-like atoms
,”
J. Phys. Chem. Ref. Data
33
,
1059
1070
(
2004
).
121.
A.
Ishida
, “
New precise measurement of the hyperfine splitting of positronium
,”
J. Phys. Chem. Ref. Data
44
,
031212
(
2015
).
122.
V. A.
Yerokhin
and
A.
Surzhykov
, “
Energy levels of core-excited 1s2l2l′ states in lithium-like ions: Argon to uranium
,”
J. Phys. Chem. Ref. Data
47
,
023105
(
2018
).
123.
R. K.
Janev
,
B. H.
Bransden
, and
J. W.
Gallagher
, “
Evaluated theoretical cross section data for charge exchange of multiply charged ions with atoms. I. Hydrogen atom-fully stripped ion systems
,”
J. Phys. Chem. Ref. Data
12
,
829
872
(
1983
).
124.
J. W.
Gallagher
,
B. H.
Bransden
, and
R. K.
Janev
, “
Evaluated theoretical cross section data for charge exchange of multiply charged ions with atoms. II. Hydrogen atom-partially stripped ion systems
,”
J. Phys. Chem. Ref. Data
12
,
873
890
(
1983
).
125.
R. K.
Janev
and
J. W.
Gallagher
, “
Evaluated theoretical cross-section data for charge exchange of multiply charged ions with atoms. III. Nonhydrogenic target atoms
,”
J. Phys. Chem. Ref. Data
13
,
1199
1249
(
1984
).
126.
K. L.
Bell
,
H. B.
Gilbody
,
J. G.
Hughes
,
A. E.
Kingston
, and
F. J.
Smith
, “
Recommended data on the electron impact ionization of light atoms and ions
,”
J. Phys. Chem. Ref. Data
12
,
891
916
(
1983
).
127.
M. A.
Lennon
,
K. L.
Bell
,
H. B.
Gilbody
,
J. G.
Hughes
,
A. E.
Kingston
,
M. J.
Murray
, and
F. J.
Smith
, “
Recommended data on the electron impact ionization of atoms and ions: Fluorine to nickel
,”
J. Phys. Chem. Ref. Data
17
,
1285
1363
(
1988
).
128.
T. J.
Morgan
,
R. E.
Olson
,
A. S.
Schlachter
, and
J. W.
Gallagher
, “
Charge transfer of hydrogen ions and atoms in metal vapors
,”
J. Phys. Chem. Ref. Data
14
,
971
1040
(
1985
).
129.
R. R.
Laher
and
F. R.
Gilmore
, “
Updated excitation and ionization cross sections for electron impact on atomic oxygen
,”
J. Phys. Chem. Ref. Data
19
,
277
305
(
1990
).
130.
Y.
Itikawa
and
A.
Ichimura
, “
Cross sections for collisions of electrons and photons with atomic oxygen
,”
J. Phys. Chem. Ref. Data
19
,
637
651
(
1990
).
131.
X.
Llovet
,
C. J.
Powell
,
F.
Salvat
, and
A.
Jablonski
, “
Cross sections for inner-shell ionization by electron impact
,”
J. Phys. Chem. Ref. Data
43
,
013102
(
2014
).
132.
R. P.
McEachran
,
F.
Blanco
,
G.
García
, and
M. J.
Brunger
, “
A relativistic complex optical potential calculation for electron-beryllium scattering: Recommended cross sections
,”
J. Phys. Chem. Ref. Data
47
,
033103
(
2018
).
133.
R. P.
McEachran
,
F.
Blanco
,
G.
García
,
P. W.
Stokes
,
R. D.
White
, and
M. J.
Brunger
, “
Integral cross sections for electron-magnesium scattering over a broad energy range (0–5000 eV)
,”
J. Phys. Chem. Ref. Data
47
,
043104
(
2018
).
134.
R. P.
McEachran
,
B. P.
Marinković
,
G.
García
,
R. D.
White
,
P. W.
Stokes
,
D. B.
Jones
, and
M. J.
Brunger
, “
Integral cross sections for electron-zinc scattering over a broad energy range (0.01–5000 eV)
,”
J. Phys. Chem. Ref. Data
49
,
013102
(
2020
).
135.
K. R.
Hamilton
,
O.
Zatsarinny
,
K.
Bartschat
,
M. S.
Rabasović
,
D.
Šević
,
B. P.
Marinković
,
S.
Dujko
,
J.
Atić
,
D. V.
Fursa
,
I.
Bray
,
R. P.
McEachran
,
F.
Blanco
,
G.
García
,
P. W.
Stokes
,
R. D.
White
,
D. B.
Jones
,
L.
Campbell
, and
M. J.
Brunger
, “
Recommended cross sections for electron-indium scattering
,”
J. Phys. Chem. Ref. Data
50
,
013101
(
2021
).
136.
K.
Ratnavelu
,
M. J.
Brunger
, and
S. J.
Buckman
, “
Recommended positron scattering cross sections for atomic systems
,”
J. Phys. Chem. Ref. Data
48
,
023102
(
2019
).
137.
N.
Konjevic
and
J. R.
Roberts
, “
A critical review of the Stark widths and shifts of spectral lines from non-hydrogenic atoms
,”
J. Phys. Chem. Ref. Data
5
,
209
257
(
1976
).
138.
N.
Konjevic
and
W. L.
Wiese
, “
Experimental Stark widths and shifts for non-hydrogenic spectral lines of ionized atoms
,”
J. Phys. Chem. Ref. Data
5
,
259
308
(
1976
).
139.
N.
Konjević
,
M. S.
Dimitrijević
, and
W. L.
Wiese
, “
Experimental Stark widths and shifts for spectral lines of neutral atoms (a critical review of selected data for the period 1976 to 1982)
,”
J. Phys. Chem. Ref. Data
13
,
619
647
(
1984
).
140.
N.
Konjević
,
M. S.
Dimitrijević
, and
W. L.
Wiese
, “
Experimental Stark widths and shifts for spectral lines of positive ions (a critical review and tabulation of selected data for the period 1976 to 1982)
,”
J. Phys. Chem. Ref. Data
13
,
649
686
(
1984
).
141.
N.
Konjević
and
W. L.
Wiese
, “
Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms
,”
J. Phys. Chem. Ref. Data
19
,
1307
1385
(
1990
).
142.
N.
Konjević
,
A.
Lesage
,
J. R.
Fuhr
, and
W. L.
Wiese
, “
Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000)
,”
J. Phys. Chem. Ref. Data
31
,
819
927
(
2002
).
143.
A.
Kramida
, NIST Atomic Spectral Line Broadening Bibliographic Database (version 3.0), available at https://physics.nist.gov/Elevbib, January 1, 2022,
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2021
, .
You do not currently have access to this content.