Atomic spectroscopy and atomic physics papers represent a significant part of publications in Journal of Physical and Chemical Reference Data (JPCRD). Critical compilations of spectroscopic data, accurate calculations of collisional parameters, and bibliography on spectral line profiles and shifts provided much needed information for plasma physics, astrophysics, lithography, fusion research, and other fields of science. We present a brief overview of the atomic physics research published in JPCRD over its first 50 years.
References
7.
1.
C. E.
Moore
, “Atomic energy levels as derived from the analysis of optical spectra—Hydrogen through vanadium
,” in National Standard Reference Data Series, NSRDS-NBS 35, Reprint of NBS Circular 467, Vol. I, 1949, National Bureau of Standards, U.S., 1971
, .2.
C. E.
Moore
, “Atomic energy levels as derived from the analysis of optical spectra—Chromium through niobium
,” in National Standard Reference Data Series, NSRDS-NBS 35, Reprint of NBS Circular 467, Vol. II, 1952, National Bureau of Standards, U.S., 1971
, .3.
C. E.
Moore
, “Atomic energy levels as derived from the analysis of optical spectra—Molybdenum through lanthanum and hafnium through actinium
,” in National Standard Reference Data Series 35, Reprint of NBS Circular 467, Vol. III, 1958, National Bureau of Standards, U.S., 1971
, .4.
A.
Kramida
, “Critical evaluation of data on atomic energy levels, wavelengths, and transition probabilities
,” Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, Daejeon, South Korea, September 04–07, 2012
[Fusion Sci. Technol. 63
, 313
–323
(2013
)].5.
W. C.
Martin
, “Energy levels of neutral helium (4He I)
,” J. Phys. Chem. Ref. Data
2
, 257
–266
(1973
).6.
M. W.
Smith
and W. L.
Wiese
, “Atomic transition probabilities for forbidden lines of the iron group elements: (a critical data compilation for selected lines)
,” J. Phys. Chem. Ref. Data
2
, 85
–120
(1973
).7.
W.
Grotrian
, “Zur frage der deutung der linien im spektrum der sonnenkorona
,” Naturwissenschaften
27
, 214
(1939
).8.
B.
Edlén
, “Die deutung der emissionslinien im spektrum der sonnenkorona. Mit 6 abbildungen
,” Z. Astrophys.
22
, 30
(1943
).9.
J.
Reader
and J.
Sugar
, “Energy levels of iron, Fe I through Fe XXVI
,” J. Phys. Chem. Ref. Data
4
, 353
–440
(1975
).10.
C.
Corliss
and J.
Sugar
, “Energy levels of iron, Fe I through Fe XXVI
,” J. Phys. Chem. Ref. Data
11
, 135
–241
(1982
).11.
J.
Sugar
and C.
Corliss
, “Energy levels of chromium, Cr I through Cr XXIV
,” J. Phys. Chem. Ref. Data
6
, 317
–384
(1977
).12.
T.
Shirai
, Y.
Nakai
, T.
Nakagaki
, J.
Sugar
, and W. L.
Wiese
, “Spectral data and grotrian diagrams for highly ionized chromium, Cr v through Cr XXIV
,” J. Phys. Chem. Ref. Data
22
, 1279
–1423
(1993
).13.
C.
Corliss
and J.
Sugar
, “Energy levels of manganese, Mn I through Mn XXV
,” J. Phys. Chem. Ref. Data
6
, 1253
–1329
(1977
).14.
T.
Shirai
, T.
Nakagaki
, K.
Okazaki
, J.
Sugar
, and W. L.
Wiese
, “Spectral data and grotrian diagrams for highly ionized manganese, Mn VII through Mn XXV
,” J. Phys. Chem. Ref. Data
23
, 179
–294
(1994
).15.
J.
Sugar
and C.
Corliss
, “Energy levels of vanadium, V I through V XXIII
,” J. Phys. Chem. Ref. Data
7
, 1191
–1262
(1978
).16.
T.
Shirai
, T.
Nakagaki
, J.
Sugar
, and W. L.
Wiese
, “Spectral data and grotrian diagrams for highly ionized vanadium, V VI through V XXIII
,” J. Phys. Chem. Ref. Data
21
, 273
–390
(1992
).17.
C.
Corliss
and J.
Sugar
, “Energy levels of titanium, Ti I through Ti XXII
,” J. Phys. Chem. Ref. Data
8
, 1
–62
(1979
).18.
E. B.
Saloman
, “Energy levels and observed spectral lines of neutral and singly ionized titanium, Ti I and Ti II
,” J. Phys. Chem. Ref. Data
41
, 013101
(2012
).19.
J.
Sugar
and C.
Corliss
, “Energy levels of scandium, Sc I through Sc XXI
,” J. Phys. Chem. Ref. Data
9
, 473
–512
(1980
).20.
V.
Kaufman
and J.
Sugar
, “Wavelengths and energy level classifications of scandium spectra for all stages of ionization
,” J. Phys. Chem. Ref. Data
17
, 1679
–1789
(1988
).21.
C.
Corliss
and J.
Sugar
, “Energy levels of nickel, Ni I through Ni XXVIII
,” J. Phys. Chem. Ref. Data
10
, 197
–290
(1981
).22.
J.
Sugar
and C.
Corliss
, “Energy levels of cobalt, Co I through Co XXVII
,” J. Phys. Chem. Ref. Data
10
, 1097
–1174
(1981
).23.
T.
Shirai
, A.
Mengoni
, Y.
Nakai
, J.
Sugar
, W. L.
Wiese
, K.
Mori
, and H.
Sakai
, “Spectral data and grotrian diagrams for highly ionized cobalt, Co VIII through Co XXVII
,” J. Phys. Chem. Ref. Data
21
, 23
–121
(1992
).24.
J.
Sugar
and C.
Corliss
, “Atomic energy levels of the iron-period elements: Potassium through nickel
,” J. Phys. Chem. Ref. Data
14
(Suppl. 2
), 664
(1985
).25.
W. L.
Wiese
and J. R.
Fuhr
, “Atomic transition probabilities for scandium and titanium (a critical data compilation of allowed lines)
,” J. Phys. Chem. Ref. Data
4
, 263
–352
(1975
).26.
S. M.
Younger
, J. R.
Fuhr
, G. A.
Martin
, and W. L.
Wiese
, “Atomic transition probabilities for vanadium, chromium, and manganese (a critical data compilation of allowed lines)
,” J. Phys. Chem. Ref. Data
7
, 495
–629
(1978
).27.
E. B.
Saloman
, “Energy levels and observed spectral lines of neutral and singly ionized chromium, Cr I and Cr II
,” J. Phys. Chem. Ref. Data
41
, 043103
(2012
).28.
J. R.
Fuhr
, G. A.
Martin
, W. L.
Wiese
, and S. M.
Younger
, “Atomic transition probabilities for iron, cobalt, and nickel (a critical data compilation of allowed lines)
,” J. Phys. Chem. Ref. Data
10
, 305
–566
(1981
).29.
J. R.
Fuhr
and W. L.
Wiese
, “A critical compilation of atomic transition probabilities for neutral and singly ionized iron
,” J. Phys. Chem. Ref. Data
35
, 1669
–1809
(2006
).30.
T.
Shirai
, Y.
Funatake
, K.
Mori
, J.
Sugar
, W. L.
Wiese
, and Y.
Nakai
, “Spectral data and grotrian diagrams for highly ionized iron, Fe VIII-XXVI
,” J. Phys. Chem. Ref. Data
19
, 127
–275
(1990
).31.
G. A.
Martin
, J. R.
Fuhr
, and W. L.
Wiese
, “Atomic transition probabilites: Scandium through manganese
,” J. Phys. Chem. Ref. Data
17
(Suppl. 3
), 523
(1988
).32.
G. A.
Martin
, J. R.
Fuhr
, and W. L.
Wiese
, “Atomic transition probabilites: Iron through nickel
,” J. Phys. Chem. Ref. Data
17
(Suppl. 4
), 504
(1988
).33.
T.
Shirai
, Y.
Nakai
, K.
Ozawa
, K.
Ishii
, J.
Sugar
, and K.
Mori
, “Spectral data for molybdenum ions, Mo VI–Mo XLII
,” J. Phys. Chem. Ref. Data
16
, 327
–377
(1987
).34.
J.
Sugar
and A.
Musgrove
, “Energy levels of molybdenum, Mo I through Mo XLII
,” J. Phys. Chem. Ref. Data
17
, 155
–239
(1988
).35.
T.
Shirai
, J.
Sugar
, A.
Musgrove
, and W.
Wiese
, “Spectral data for highly ionized atoms: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Kr, and Mo
,” J. Phys. Chem. Ref. Data Mon.
8
(2000
).36.
A.
Kramida
and W. C.
Martin
, “A compilation of energy levels and wavelengths for the spectrum of neutral beryllium (Be I)
,” J. Phys. Chem. Ref. Data
26
, 1185
–1194
(1997
).37.
J. R.
Fuhr
and W. L.
Wiese
, “Tables of atomic transition probabilities for beryllium and boron
,” J. Phys. Chem. Ref. Data
39
, 013101
(2010
).38.
S.
Nasiri
, L.
Adamowicz
, and S.
Bubin
, “Benchmark calculations of the energy spectra and oscillator strengths of the beryllium atom
,” J. Phys. Chem. Ref. Data
50
, 043107
(2021
).39.
A. E.
Kramida
and T.
Shirai
, “Compilation of wavelengths, energy levels, and transition probabilities for W I and W II
,” J. Phys. Chem. Ref. Data
35
, 423
–683
(2006
).40.
W. C.
Martin
and R.
Zalubas
, “Energy levels of aluminum, Al I through Al XIII
,” J. Phys. Chem. Ref. Data
8
, 817
–864
(1979
).41.
V.
Kaufman
and W. C.
Martin
, “Wavelengths and energy level classifications for the spectra of aluminum (Al I through Al XIII)
,” J. Phys. Chem. Ref. Data
20
, 775
–858
(1991
).42.
J.
Sugar
and C.
Corliss
, “Energy levels of calcium, Ca I through Ca XX
,” J. Phys. Chem. Ref. Data
8
, 865
–916
(1979
).43.
C.
Corliss
and J.
Sugar
, “Energy levels of potassium, K I through K XIX
,” J. Phys. Chem. Ref. Data
8
, 1109
–1146
(1979
).44.
J. E.
Sansonetti
, “Wavelengths, transition probabilities, and energy levels for the spectra of potassium (K I through K XIX)
,” J. Phys. Chem. Ref. Data
37
, 7
–96
(2008
).45.
W. C.
Martin
and R.
Zalubas
, “Energy levels of magnesium, Mg I through Mg XII
,” J. Phys. Chem. Ref. Data
9
, 1
–58
(1980
).46.
V.
Kaufman
and W. C.
Martin
, “Wavelengths and energy level classifications of magnesium spectra for all stages of ionization (Mg I through Mg XII)
,” J. Phys. Chem. Ref. Data
20
, 83
–152
(1991
).47.
W. C.
Martin
and R.
Zalubas
, “Energy levels of sodium Na I through Na XI
,” J. Phys. Chem. Ref. Data
10
, 153
–196
(1981
).48.
W. C.
Martin
and R.
Zalubas
, “Energy levels of silicon, Si I through Si XIV
,” J. Phys. Chem. Ref. Data
12
, 323
–380
(1983
).49.
W. C.
Martin
, R.
Zalubas
, and A.
Musgrove
, “Energy levels of phosphorus, P I through P XV
,” J. Phys. Chem. Ref. Data
14
, 751
–802
(1985
).50.
W. C.
Martin
, R.
Zalubas
, and A.
Musgrove
, “Energy levels of sulfur, S I through S XVI
,” J. Phys. Chem. Ref. Data
19
, 821
–880
(1990
).51.
V.
Kaufman
and W. C.
Martin
, “Wavelengths and energy level classifications for the spectra of sulfur (S I through S XVI)
,” J. Phys. Chem. Ref. Data
22
, 279
–375
(1993
).52.
J.
Sugar
and A.
Musgrove
, “Energy levels of copper, Cu I through Cu XXIX
,” J. Phys. Chem. Ref. Data
19
, 527
–616
(1990
).53.
T.
Shirai
, T.
Nakagaki
, Y.
Nakai
, J.
Sugar
, K.
Ishii
, and K.
Mori
, “Spectral data and grotrian diagrams for highly ionized copper, Cu X–Cu XXIX
,” J. Phys. Chem. Ref. Data
20
, 1
–81
(1991
).54.
W. C.
Martin
, V.
Kaufman
, and A.
Musgrove
, “A compilation of energy levels and wavelengths for the spectrum of singly-ionized oxygen (O II)
,” J. Phys. Chem. Ref. Data
22
, 1179
–1212
(1993
).55.
J.
Sugar
and A.
Musgrove
, “Energy levels of zinc, Zn I through Zn XXX
,” J. Phys. Chem. Ref. Data
24
, 1803
–1872
(1995
).56.
E. B.
Saloman
and C. J.
Sansonetti
, “Wavelengths, energy level classifications, and energy levels for the spectrum of neutral neon
,” J. Phys. Chem. Ref. Data
33
, 1113
–1158
(2004
).57.
E. B.
Saloman
, “Energy levels and observed spectral lines of ionized argon, Ar II through Ar XVIII
,” J. Phys. Chem. Ref. Data
39
, 033101
(2010
), 58.
J. E.
Sansonetti
, “Wavelengths, transition probabilities, and energy levels for the spectra of sodium (Na I–Na XI)
,” J. Phys. Chem. Ref. Data
37
, 1659
–1763
(2008
).59.
V.
Vujnović
and W. L.
Wiese
, “A critical compilation of atomic transition probabilities for singly ionized argon
,” J. Phys. Chem. Ref. Data
21
, 919
–939
(1992
).60.
W.
Wiese
, J.
Fuhr
, and T.
Deters
, “Atomic transition probabilities of carbon, nitrogen, and oxygen—A critical data compilation
,” J. Phys. Chem. Ref. Data Mon.
7
(1996
).61.
W. L.
Wiese
and J. R.
Fuhr
, “Improved critical compilations of selected atomic transition probabilities for neutral and singly ionized carbon and nitrogen
,” J. Phys. Chem. Ref. Data
36
, 1287
–1345
(2007
).62.
W. L.
Wiese
and J. R.
Fuhr
, “Accurate atomic transition probabilities for hydrogen, helium, and lithium
,” J. Phys. Chem. Ref. Data
38
, 565
–720
(2009
).63.
L. I.
Podobedova
, A.
Musgrove
, D. E.
Kelleher
, J.
Reader
, and W. L.
Wiese
, “Atomic spectral tables for the Chandra X-ray observatory. Part I S VIII–S XIV
,” J. Phys. Chem. Ref. Data
32
, 1367
–1386
(2003
).64.
L. I.
Podobedova
, D. E.
Kelleher
, J.
Reader
, and W. L.
Wiese
, “Atomic spectral tables for the Chandra X-ray observatory. Part II. Si VI–Si XII
,” J. Phys. Chem. Ref. Data
33
, 471
–494
(2004
).65.
L. I.
Podobedova
, D. E.
Kelleher
, J.
Reader
, and W. L.
Wiese
, “Atomic spectral tables for the Chandra X-ray observatory. Part III. Mg V–Mg X
,” J. Phys. Chem. Ref. Data
33
, 495
–524
(2004
).66.
L. I.
Podobedova
, J. R.
Fuhr
, J.
Reader
, and W. L.
Wiese
, “Atomic spectral tables for the Chandra X-ray observatory. Part IV. Ne V–Ne VIII
,” J. Phys. Chem. Ref. Data
33
, 525
–540
(2004
).67.
D. E.
Kelleher
and L. I.
Podobedova
, “Atomic transition probabilities of sodium and magnesium. A critical compilation
,” J. Phys. Chem. Ref. Data
37
, 267
–706
(2008
).68.
D. E.
Kelleher
and L. I.
Podobedova
, “Atomic transition probabilities of aluminum. A critical compilation
,” J. Phys. Chem. Ref. Data
37
, 709
–911
(2008
).69.
D. E.
Kelleher
and L. I.
Podobedova
, “Atomic transition probabilities of silicon. A critical compilation
,” J. Phys. Chem. Ref. Data
37
, 1285
–1501
(2008
).70.
L. I.
Podobedova
, D. E.
Kelleher
, and W. L.
Wiese
, “Critically evaluated atomic transition probabilities for sulfur S I–S XV
,” J. Phys. Chem. Ref. Data
38
, 171
–439
(2009
).71.
J.
Sugar
and A.
Musgrove
, “Energy levels of krypton, Kr I through Kr XXXVI
,” J. Phys. Chem. Ref. Data
20
, 859
–915
(1991
).72.
T.
Shirai
, K.
Okazaki
, and J.
Sugar
, “Spectral data for highly ionized krypton, Kr V through Kr XXXVI
,” J. Phys. Chem. Ref. Data
24
, 1577
–1608
(1995
).73.
E. B.
Saloman
, “Energy levels and observed spectral lines of krypton, Kr I through Kr XXXVI
,” J. Phys. Chem. Ref. Data
36
, 215
–386
(2007
).74.
C. J.
Humphreys
, “First spectra of neon, argon, and xenon 136 in the 1.2–4.0 μm region
,” J. Phys. Chem. Ref. Data
2
, 519
–530
(1973
).75.
E. B.
Saloman
, “Energy levels and observed spectral lines of xenon, Xe I through Xe LIV
,” J. Phys. Chem. Ref. Data
33
, 765
–921
(2004
).76.
J. Z.
Klose
, J. R.
Fuhr
, and W. L.
Wiese
, “Critically evaluated atomic transition probabilities for Ba I and Ba II
,” J. Phys. Chem. Ref. Data
31
, 217
–230
(2002
).77.
J. J.
Curry
, “Compilation of wavelengths, energy levels, and transition probabilities for Ba I and Ba II
,” J. Phys. Chem. Ref. Data
33
, 725
–746
(2004
).78.
J. E.
Sansonetti
and J. J.
Curry
, “Wavelengths, transition probabilities, and energy levels for the spectra of barium (Ba III through Ba LVI)
,” J. Phys. Chem. Ref. Data
39
, 043103
(2010
).79.
W. C.
Martin
, L.
Hagan
, J.
Reader
, and J.
Sugar
, “Ground levels and ionization potentials for lanthanide and actinide atoms and ions
,” J. Phys. Chem. Ref. Data
3
, 771
–780
(1974
).80.
H.
Hotop
and W. C.
Lineberger
, “Binding energies in atomic negative ions
,” J. Phys. Chem. Ref. Data
4
, 539
–576
(1975
).81.
H.
Hotop
and W. C.
Lineberger
, “Binding energies in atomic negative ions: II
,” J. Phys. Chem. Ref. Data
14
, 731
–750
(1985
).82.
T.
Andersen
, H. K.
Haugen
, and H.
Hotop
, “Binding energies in atomic negative ions: III
,” J. Phys. Chem. Ref. Data
28
, 1511
–1533
(1999
).83.
J. E.
Sansonetti
, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (Rb I through Rb XXXVII)
,” J. Phys. Chem. Ref. Data
35
, 301
–421
(2006
).84.
E. B.
Saloman
, “Wavelengths, energy level classifications, and energy levels for the spectrum of neutral mercury
,” J. Phys. Chem. Ref. Data
35
, 1519
–1548
(2006
).85.
J. E.
Sansonetti
, “Spectroscopic data for neutral francium (Fr I)
,” J. Phys. Chem. Ref. Data
36
, 497
–507
(2007
).86.
J. E.
Sansonetti
, “Wavelengths, transition probabilities, and energy levels for the spectra of cesium (Cs I–Cs LV)
,” J. Phys. Chem. Ref. Data
38
, 761
–923
(2009
).87.
J. E.
Sansonetti
and G.
Nave
, “Wavelengths, transition probabilities, and energy levels for the spectrum of neutral strontium (Sr I)
,” J. Phys. Chem. Ref. Data
39
, 033103
(2010
).88.
J. E.
Sansonetti
, “Wavelengths, transition probabilities, and energy levels for the spectra of strontium ions (Sr II through Sr XXXVIII)
,” J. Phys. Chem. Ref. Data
41
, 013102
(2012
).89.
J.
Sugar
and A.
Musgrove
, “Energy levels of germanium, Ge I through Ge XXXII
,” J. Phys. Chem. Ref. Data
22
, 1213
–1278
(1993
).90.
T.
Shirai
, J.
Reader
, A. E.
Kramida
, and J.
Sugar
, “Spectral data for gallium: Ga I through Ga XXXI
,” J. Phys. Chem. Ref. Data
36
, 509
–615
(2007
).91.
V.
Kaufman
and B.
Edlén
, “Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å
,” J. Phys. Chem. Ref. Data
3
, 825
–895
(1974
).92.
G. A.
Martin
and W. L.
Wiese
, “Tables of critically evaluated oscillator strengths for the lithium isoelectronic sequence
,” J. Phys. Chem. Ref. Data
5
, 537
–570
(1976
).93.
V.
Kaufman
and J.
Sugar
, “Forbidden lines in ns2npk ground configurations and nsnp excited configurations of beryllium through molybdenum atoms and ions
,” J. Phys. Chem. Ref. Data
15
, 321
–426
(1986
).94.
J. E.
Sansonetti
and W. C.
Martin
, “Handbook of basic atomic spectroscopic data
,” J. Phys. Chem. Ref. Data
34
, 1559
–2259
(2005
).95.
J.
Sansonetti
, W.
Olsen
, and S.
Young
, Handbook of Basic Atomic Spectroscopic Data, available at https://physics.nist.gov/Handbook, January 1, 2022, National Institute of Standards and Technology
, Gaithersburg, MD
, 2005
.96.
A.
Kramida
, Yu.
Ralchenko
, J.
Reader
, and NIST ASD Team
, NIST Atomic Spectra Database (ver. 5.9), available at https://physics.nist.gov/asd, January 1, 2022, National Institute of Standards and Technology
, Gaithersburg, MD
, 2021
, .97.
A.
Kramida
, K.
Olsen
, and Yu.
Ralchenko
, NIST LIBS Database, available at https://physics.nist.gov/PhysRefData/ASD/LIBS/libs-form.html, January 1, 2022, National Institute of Standards and Technology
, Gaithersburg, MD
, 2021
.98.
H.-K.
Chung
, M. H.
Chen
, W. L.
Morgan
, Yu.
Ralchenko
, and R. W.
Lee
, “FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements
,” High Energy Density Phys.
1
, 3
–12
(2005
).99.
K.
Olsen
, C.
Fontes
, C.
Fryer
, A.
Hungerford
, R.
Wollaeger
, O.
Korobkin
, and Yu.
Ralchenko
, NIST-LANL Lanthanide Opacity Database, available at https://nlte.nist.gov/OPAC, January 1, 2022, National Institute of Standards and Technology
, Gaithersburg, MD
, 2021
.100.
Yu.
Ralchenko
and A.
Kramida
, “Development of NIST atomic databases and online tools
,” Atoms
8
, 56
(2020
).101.
M. O.
Krause
, “Atomic radiative and radiationless yields for K and L shells
,” J. Phys. Chem. Ref. Data
8
, 307
–327
(1979
).102.
M. O.
Krause
and J. H.
Oliver
, “Natural widths of atomic K-levels and L-levels, K-alpha X-ray-lines and several KLL Auger lines
,” J. Phys. Chem. Ref. Data
8
, 329
–338
(1979
).103.
G. W.
Erickson
, “Energy levels of one-electron atoms
,” J. Phys. Chem. Ref. Data
6
, 831
–870
(1977
).104.
R. L.
Kelly
, “Atomic and ionic spectrum lines below 2000 angstroms. Hydrogen through krypton
,” J. Phys. Chem. Ref. Data
16
(Suppl. 1) (1987
).105.
M.
Outred
, “Tables of atomic spectral lines for the 10000 Å to 40000 Å region
,” J. Phys. Chem. Ref. Data
7
, 1
–262
(1978
).106.
F. T.
Porter
and M. S.
Freedman
, “Recommended atomic electron binding energies, 1s to 6p3/2, for the heavy elements, Z = 84 to 103
,” J. Phys. Chem. Ref. Data
7
, 1267
–1284
(1978
).107.
G. A.
Odintzova
and A. R.
Striganov
, “The spectrum and energy levels of the neutral atom of boron (B I)
,” J. Phys. Chem. Ref. Data
8
, 63
–68
(1979
).108.
S. G.
Karshenboim
, E. Y.
Korzinin
, V. A.
Shelyuto
, and V. G.
Ivanov
, “Theory of Lamb shift in muonic hydrogen
,” J. Phys. Chem. Ref. Data
44
, 031202
(2015
).109.
V. M.
Shabaev
, D. A.
Glazov
, G.
Plunien
, and A. V.
Volotka
, “Theory of bound-electron g factor in highly charged ions
,” J. Phys. Chem. Ref. Data
44
, 031205
(2015
).110.
K.
Pachucki
and V. A.
Yerokhin
, “Theory of the helium isotope shift
,” J. Phys. Chem. Ref. Data
44
, 031206
(2015
).111.
V. A.
Yerokhin
and A.
Surzhykov
, “Theoretical energy levels of 1sns and 1snp states of helium-like ions
,” J. Phys. Chem. Ref. Data
48
, 033104
(2019
).112.
A.
Marsman
, M.
Horbatsch
, and E. A.
Hessels
, “The effect of quantum-mechanical interference on precise measurements of the n = 2 triplet P fine structure of helium
,” J. Phys. Chem. Ref. Data
44
, 031207
(2015
).113.
V. A.
Yerokhin
and V. M.
Shabaev
, “Lamb shift of n = 1 and n = 2 states of hydrogen-like atoms, 1 ≤ Z ≤ 110
,” J. Phys. Chem. Ref. Data
44
, 033103
(2015
).114.
U.
Dammalapati
, K.
Jungmann
, and L.
Willmann
, “Compilation of spectroscopic data of radium (Ra I and Ra II)
,” J. Phys. Chem. Ref. Data
45
, 013101
(2016
).115.
D. A.
Johnson
and P. G.
Nelson
, “Lanthanide ionization energies and the sub-shell break. Part 1. The second ionization energies
,” J. Phys. Chem. Ref. Data
46
, 013108
(2017
).116.
D. A.
Johnson
and P. G.
Nelson
, “Lanthanide ionization energies and the sub-shell break. Part 2. The third and fourth ionization energies
,” J. Phys. Chem. Ref. Data
46
, 013109
(2017
).117.
E. S.
Chang
, “Energy levels of atomic aluminum with hyperfine structure
,” J. Phys. Chem. Ref. Data
19
, 119
–125
(1990
).118.
J. H.
Hubbell
, P. N.
Trehan
, N.
Singh
, B.
Chand
, D.
Mehta
, M. L.
Garg
, R. R.
Garg
, S.
Singh
, and S.
Puri
, “A review, bibliography, and tabulation of K, L, and higher atomic shell X-ray fluorescence yields
,” J. Phys. Chem. Ref. Data
23
, 339
–364
(1994
).119.
D.
Ma
, N.
Zheng
, and J.
Fan
, “Theoretical Analysis on 3dnl J = 1e–5e Autoionizing Levels in Ca
,” J. Phys. Chem. Ref. Data
33
, 1013
–1030
(2004
).120.
O.
Jitrik
and C. F.
Bunge
, “Transition probabilities for hydrogen-like atoms
,” J. Phys. Chem. Ref. Data
33
, 1059
–1070
(2004
).121.
A.
Ishida
, “New precise measurement of the hyperfine splitting of positronium
,” J. Phys. Chem. Ref. Data
44
, 031212
(2015
).122.
V. A.
Yerokhin
and A.
Surzhykov
, “Energy levels of core-excited 1s2l2l′ states in lithium-like ions: Argon to uranium
,” J. Phys. Chem. Ref. Data
47
, 023105
(2018
).123.
R. K.
Janev
, B. H.
Bransden
, and J. W.
Gallagher
, “Evaluated theoretical cross section data for charge exchange of multiply charged ions with atoms. I. Hydrogen atom-fully stripped ion systems
,” J. Phys. Chem. Ref. Data
12
, 829
–872
(1983
).124.
J. W.
Gallagher
, B. H.
Bransden
, and R. K.
Janev
, “Evaluated theoretical cross section data for charge exchange of multiply charged ions with atoms. II. Hydrogen atom-partially stripped ion systems
,” J. Phys. Chem. Ref. Data
12
, 873
–890
(1983
).125.
R. K.
Janev
and J. W.
Gallagher
, “Evaluated theoretical cross-section data for charge exchange of multiply charged ions with atoms. III. Nonhydrogenic target atoms
,” J. Phys. Chem. Ref. Data
13
, 1199
–1249
(1984
).126.
K. L.
Bell
, H. B.
Gilbody
, J. G.
Hughes
, A. E.
Kingston
, and F. J.
Smith
, “Recommended data on the electron impact ionization of light atoms and ions
,” J. Phys. Chem. Ref. Data
12
, 891
–916
(1983
).127.
M. A.
Lennon
, K. L.
Bell
, H. B.
Gilbody
, J. G.
Hughes
, A. E.
Kingston
, M. J.
Murray
, and F. J.
Smith
, “Recommended data on the electron impact ionization of atoms and ions: Fluorine to nickel
,” J. Phys. Chem. Ref. Data
17
, 1285
–1363
(1988
).128.
T. J.
Morgan
, R. E.
Olson
, A. S.
Schlachter
, and J. W.
Gallagher
, “Charge transfer of hydrogen ions and atoms in metal vapors
,” J. Phys. Chem. Ref. Data
14
, 971
–1040
(1985
).129.
R. R.
Laher
and F. R.
Gilmore
, “Updated excitation and ionization cross sections for electron impact on atomic oxygen
,” J. Phys. Chem. Ref. Data
19
, 277
–305
(1990
).130.
Y.
Itikawa
and A.
Ichimura
, “Cross sections for collisions of electrons and photons with atomic oxygen
,” J. Phys. Chem. Ref. Data
19
, 637
–651
(1990
).131.
X.
Llovet
, C. J.
Powell
, F.
Salvat
, and A.
Jablonski
, “Cross sections for inner-shell ionization by electron impact
,” J. Phys. Chem. Ref. Data
43
, 013102
(2014
).132.
R. P.
McEachran
, F.
Blanco
, G.
García
, and M. J.
Brunger
, “A relativistic complex optical potential calculation for electron-beryllium scattering: Recommended cross sections
,” J. Phys. Chem. Ref. Data
47
, 033103
(2018
).133.
R. P.
McEachran
, F.
Blanco
, G.
García
, P. W.
Stokes
, R. D.
White
, and M. J.
Brunger
, “Integral cross sections for electron-magnesium scattering over a broad energy range (0–5000 eV)
,” J. Phys. Chem. Ref. Data
47
, 043104
(2018
).134.
R. P.
McEachran
, B. P.
Marinković
, G.
García
, R. D.
White
, P. W.
Stokes
, D. B.
Jones
, and M. J.
Brunger
, “Integral cross sections for electron-zinc scattering over a broad energy range (0.01–5000 eV)
,” J. Phys. Chem. Ref. Data
49
, 013102
(2020
).135.
K. R.
Hamilton
, O.
Zatsarinny
, K.
Bartschat
, M. S.
Rabasović
, D.
Šević
, B. P.
Marinković
, S.
Dujko
, J.
Atić
, D. V.
Fursa
, I.
Bray
, R. P.
McEachran
, F.
Blanco
, G.
García
, P. W.
Stokes
, R. D.
White
, D. B.
Jones
, L.
Campbell
, and M. J.
Brunger
, “Recommended cross sections for electron-indium scattering
,” J. Phys. Chem. Ref. Data
50
, 013101
(2021
).136.
K.
Ratnavelu
, M. J.
Brunger
, and S. J.
Buckman
, “Recommended positron scattering cross sections for atomic systems
,” J. Phys. Chem. Ref. Data
48
, 023102
(2019
).137.
N.
Konjevic
and J. R.
Roberts
, “A critical review of the Stark widths and shifts of spectral lines from non-hydrogenic atoms
,” J. Phys. Chem. Ref. Data
5
, 209
–257
(1976
).138.
N.
Konjevic
and W. L.
Wiese
, “Experimental Stark widths and shifts for non-hydrogenic spectral lines of ionized atoms
,” J. Phys. Chem. Ref. Data
5
, 259
–308
(1976
).139.
N.
Konjević
, M. S.
Dimitrijević
, and W. L.
Wiese
, “Experimental Stark widths and shifts for spectral lines of neutral atoms (a critical review of selected data for the period 1976 to 1982)
,” J. Phys. Chem. Ref. Data
13
, 619
–647
(1984
).140.
N.
Konjević
, M. S.
Dimitrijević
, and W. L.
Wiese
, “Experimental Stark widths and shifts for spectral lines of positive ions (a critical review and tabulation of selected data for the period 1976 to 1982)
,” J. Phys. Chem. Ref. Data
13
, 649
–686
(1984
).141.
N.
Konjević
and W. L.
Wiese
, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms
,” J. Phys. Chem. Ref. Data
19
, 1307
–1385
(1990
).142.
N.
Konjević
, A.
Lesage
, J. R.
Fuhr
, and W. L.
Wiese
, “Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000)
,” J. Phys. Chem. Ref. Data
31
, 819
–927
(2002
).143.
A.
Kramida
, NIST Atomic Spectral Line Broadening Bibliographic Database (version 3.0), available at https://physics.nist.gov/Elevbib, January 1, 2022, National Institute of Standards and Technology
, Gaithersburg, MD
, 2021
, .© 2022 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved.
2022
U.S. Secretary of Commerce
You do not currently have access to this content.