A detailed overview is provided of the vast number of innovative data programs over 120 years at the National Bureau of Standards (NBS)/National Institute of Standards and Technology (NIST). These programs provide critically evaluated data used throughout the world. The NBS was founded in 1901 through an act of Congress and in 1988 renamed as the NIST. Measurement and dissemination of scientific data to support competitiveness in American industry has been the core of its mission from the beginning. The National Standard Reference Data System (NSRDS) at NBS was established in 1963, followed by the SRD Act of 1968 to establish data evaluation centers and coordinated comprehensive programs to ensure that reliable reference data are easily accessible by scientists, engineers, and the general public. The Journal of Physical and Chemical Reference Data (JPCRD), started in 1972, has now published 50 volumes. NSRDS and JPCRD publications have provided widely employed print databases in many areas of science; these databases were expanded to computer databases in the 1980s and then to web-based databases in the 1990s. The data programs at NBS/NIST provide critically evaluated data in areas such as the thermodynamic properties of gas- and condensed-phase compounds, their multicomponent mixtures as well as chemical reactions, ceramic-phase equilibria, crystallographic data, refrigerants, water/ice/steam, gas-phase ionic species, atomic energy levels and molecular spectra, molecular mass spectra and peptide mass spectra, chemical kinetics, the CODATA fundamental constants of nature, and the International Union of Pure and Applied Chemistry International Chemical Identifier (InChI).

1.
An Act to Establish the National Bureau of Standards, Public Law 177, 56th Congress, Chap. 872, Sec. 2, March 3, 1901.
2.
Omnibus Trade and Competitiveness Act of 1988, Public Law 100-418, 100th Congress, August 23, 1988.
3.
D.
Garvin
, “
Guidelines for reporting of numerical data and experimental procedures
,”
J. Res. Natl. Bur. Stand., Sect. A
76A
,
67
(
1972
).
4.
B. N.
Taylor
and
C.
Kuyatt
, “
Guidelines for evaluating and expressing the uncertainty of NIST measurement results
,” NIST Technical Note 1297,
1994
.
5.
E. W.
Washburn
,
International Critical Tables of Numerical Data, Physics, Chemistry, and Technology
(
National Research Council; McGraw-Hill Book Co.
,
New York
,
1926; 1933
), Vols. 1–7.
6.
D. R.
Lide
, “
Critical data for critical needs
,”
Science
212
,
1343
(
1981
).
7.
H. C.
Dickinson
and
M. S.
Van Dusen
, “
The testing of thermal insulators
,”
ASRE J.
3
,
25
(
1916
).
8.
Tables of Thermodynamic Properties of Ammonia, Circular of the Bureau of Standards 142,
1923
, .
10.
W.
Wong-Ng
,
R. S.
Roth
,
T. A.
Vanderah
, and
H. F.
McMurdie
, “
Phase equilibria and crystallography of ceramic oxides
,”
J. Res. Natl. Inst. Stand. Technol.
106
,
1097
(
2001
).
11.
F. R.
Bichowsky
and
F. D.
Rossini
,
The Thermochemistry of the Chemical Substances
(
Reinhold Publishing Co.
,
New York
,
1936
).
12.
C. E.
Moore
, , Circular of the National Bureau of Standards 467 (
National Bureau of Standards
,
Gaithersburg, MD
,
1949
).
13.
National Research Council Committee on Kinetics of Chemical Reactions, Tables of Chemical Kinetics—Homogeneous Reactions, NBS Circular 510,
September 1951
, .
14.
E. L.
Brady
and
M. B.
Wallenstein
, National Standard Reference Data System: Plan of Operation, NSRDS-NBS 1,
1964
, Appendix A, .
15.
Standard Reference Data Act, Public Law 90-396, 15 U.S.C. 290,
July 11, 1968
.
16.
E. L.
Brady
, “
Status report: National Standard Reference Data System
,” NBS Technical Note 289,
Gaithersburg, MD
,
April 1966
.
17.
E. L.
Brady
and
M. B.
Wallenstein
, “
The National Standard Reference Data System
,”
Science
156
,
754
(
1967
).
18.
National Standard Reference Data Series, https://www.nist.gov/srd/national-standard-reference-data-series; accessed January 5, 2022.
19.
D. R.
Lide
, “
Fifty years of the Journal of Physical and Chemical Reference Data
,”
J. Phys. Chem. Ref. Data
50
,
010402
(
2021
).
20.
Journal of Physical and Chemical Reference Data, http://jpcrd.aip.org; accessed January 5, 2022.
21.
DIPPR, Design Institute for Physical Properties, http://www.aiche.org/dippr; accessed July 22, 2021.
22.
ASM Digital Library, ASM International, http://www.asminternational.org/online-databases-journals; accessed July 22, 2021.
23.
ACerS-NIST Phase Equilibrium Diagrams, NIST Standard Reference Datbase 31, https://www.nist.gov/srd/nist-standard-reference-database-31; accessed July 22, 2021.
24.
National Association of Corrosion Engineers (NACE), http://www.nace.org/home.aspx; accessed July 22, 2021.
25.
NIST Standard Reference Data (SRD), https://www.nist.gov/srd; accessed July 22, 2021.
26.
A. D.
Mighell
,
C. R.
Hubbard
, and
J. K.
Stalick
, “
NBS*AIDS80: A FORTRAN program for crystallographic data evaluation
,” NIST Technical Note 1141,
1981
, .
27.
NIST Alloy Data, https://www.nist.gov/mml/acmd/trc/nist-alloy-data; accessed July 22, 2021.
28.
B.
Wilthan
,
V.
Diky
,
A.
Kazakov
,
K.
Kroenlein
,
C.
Muzny
,
D.
Riccardi
, and
S.
Townsend
, NIST Alloy Data, https://trc.nist.gov/metals_data; accessed July 22, 2021.
29.
B.
Wilthan
,
E. A.
Pfeif
,
V. V.
Diky
,
R. D.
Chirico
,
U. R.
Kattner
, and
K.
Kroenlein
, “
Data resources for thermophysical properties of metals and alloys, Part 1: Structured data capture from the archival literature
,”
Calphad
56
,
126
(
2017
).
30.
H. J.
Bernstein
and
L. C.
Andrews
,
The NIH/EPA Chemical Information System, NIH/EPA Database 2
(
NIH/EPA
,
Washington, DC
,
1979
).
31.
S. R.
Heller
and
G. W. A.
Milne
, “
The NIH/EPA chemical information system
,”
Environ. Sci. Technol.
13
,
798
(
1979
).
32.
C. D.
Wagner
, “
The NIST X-ray photoelectron spectroscopy (XPS) database
,” NIST Technical Note 1289,
1991
.
33.
T. E.
Gills
,
S.
Dittman
,
J. R.
Rumble
,
C. S.
Brickenkamp
,
G. L.
Harris
, and
N. M.
Trahey
, “
NIST mechanisms for disseminating measurements
,”
J. Res. Natl. Inst. Stand. Technol.
106
,
315
(
2001
).
34.
D. R.
Lide
, “
Selected values of chemical thermodynamic properties
,” in , NIST Special Publication 958, edited by
D. R.
Lide
(
National Bureau of Standards
,
Gaithersburg, MD
,
2001
), pp.
93
96
.
35.
F. D.
Rossini
,
D. D.
Wagman
,
W. H.
Evans
,
S.
Levine
, and
I.
Jaffe
, Selected Values of Chemical Thermodynamic Properties, Circular of the National Bureau of Standards 500,
1952
, .
36.
D. R.
Stull
and
H.
Prophet
, , 2nd ed., National Standard Reference Data Series, NBS 37 (
National Institute of Standards and Technology
,
Gaithersburg, MD
,
1971
).
37.
M. W.
Chase
,
J. L.
Curnutt
,
J. R.
Downey
,
R. A.
McDonald
,
A. N.
Syverud
, and
E. A.
Valenzuela
, “
JANAF thermochemical tables, 1982 supplement
,”
J. Phys. Chem. Ref. Data
11
,
695
(
1982
).
38.
M. W.
Chase
,
C. A.
Davies
,
J. R.
Downey
,
D. J.
Frurip
,
R. A.
Mcdonald
, and
A. N.
Syverud
, “
JANAF thermochemical tables—3rd edition. 1. Al-Co
,”
J. Phys. Chem. Ref. Data
14
(
Suppl. 1
),
1
(
1985
).
39.
M. W.
Chase
,
C. A.
Davies
,
J. R.
Downey
,
D. J.
Frurip
,
R. A.
McDonald
, and
A. N.
Syverud
, “
JANAF thermochemical tables—3rd edition. 2. Cr-Zr
,”
J. Phys. Chem. Ref. Data
14
(
Suppl. 1
),
927
(
1985
).
40.
M. W.
Chase
, Jr.
,
NIST-JANAF Thermochemical Tables
, 4th ed., J. Phys. Chem. Ref. Data Monograph Vol. 9 (
1998
).
41.
D. D.
Wagman
,
W. H.
Evans
,
I.
Hallow
,
V. B.
Parker
,
S. M.
Bailey
, and
R. H.
Schum
, “
Selected values of chemical thermodynamic properties
,” National Bureau of Standards Technical Note 270-3,
1968
.
42.
D. D.
Wagman
,
W. H.
Evans
,
V. B.
Parker
,
R. H.
Schumm
,
I.
Halow
,
S. M.
Bailey
,
K. L.
Churney
, and
R. L.
Nuttall
, “
Erratum: The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units [J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982)]
,”
J. Phys. Chem. Ref. Data
18
,
1807
(
1989
).
43.
P. J.
Linstrom
, NIST Chemistry WebBook, NIST Standard Reference Database 69, https://webbook.nist.gov/; accessed July 22, 2021.
44.
E. S.
Domalski
and
E. D.
Hearing
, “
Heat capacities and entropies of organic compounds in the condensed phase volume II
,”
J. Phys. Chem. Ref. Data
19
,
881
(
1990
).
45.
E. S.
Domalski
and
E. D.
Hearing
, “
Heat capacities and entropies of organic compounds in the condensed phase. Volume III
,”
J. Phys. Chem. Ref. Data
25
,
1
(
1996
).
46.
R. N.
Goldberg
, Compiled Thermodynamic Data Sources for Aqueous and Biochemical Systems: An Annotated Bibliography (1930–1983), NBS Special Publication 685,
1984
, .
47.
E. L.
Eliel
,
Frederick Dominic Rossini, 1899-1990
, Biographical Memoirs Vol. 77 (
National Academy Press
,
Washington, DC
,
1999
).
48.
F. D.
Rossini
,
K. S.
Pitzer
,
W. J.
Taylor
,
J. P.
Ebert
,
J. E.
Kilpatrick
,
J. E.
Beckett
,
M. G.
Williams
, and
H. G.
Werner
, , Circular of the National Bureau of Standards Vol. 461 (
National Bureau of Standards
,
Gaithersburg, MD
,
1947
).
49.
F. D.
Rossini
, “
50 years of thermodynamics and thermochemistry
,”
J. Chem. Thermodyn.
8
,
805
(
1976
).
50.
J. D.
Cox
,
D. D.
Wagman
, and
V. A.
Medvedev
,
CODATA Key Values for Thermodynamics
(
Hemisphere Publishing Corp.
,
New York
,
1989
).
51.
M.
Frenkel
, “
A never-ending search for the truth: Thermodynamics in the uncertain era of the internet
,”
J. Chem. Thermodyn.
84
,
18
(
2015
).
52.
M.
Frenkel
, “
Global information systems in science: Application to the field of thermodynamics
,”
J. Chem. Eng. Data
54
,
2411
(
2009
).
53.
M.
Frenkel
,
R. D.
Chirico
,
V.
Diky
,
X.
Yan
,
Q.
Dong
, and
C.
Muzny
, “
ThermoData engine (TDE): Software implementation of the dynamic data evaluation concept
,”
J. Chem. Inf. Model.
45
,
816
(
2005
).
54.
M.
Frenkel
,
R. D.
Chiroco
,
V.
Diky
,
Q.
Dong
,
K. N.
Marsh
,
J. H.
Dymond
,
W. A.
Wakeham
,
S. E.
Stein
,
E.
Königsberger
, and
A. R. H.
Goodwin
, “
XML-based IUPAC standard for experimental, predicted, and critically evaluated thermodynamic property data storage and capture (ThermoML) (IUPAC Recommendations 2006)
,”
Pure Appl. Chem.
78
,
541
(
2006
).
55.
M.
Frenkel
,
R. D.
Chirico
,
V.
Diky
,
P. L.
Brown
,
J. H.
Dymond
,
R. N.
Goldberg
,
A. R. H.
Goodwin
,
H.
Heerklotz
,
E.
Königsberger
,
J. E.
Ladbury
,
K. N.
Marsh
,
D. P.
Remeta
,
S. E.
Stein
,
W. A.
Wakeham
, and
P. A.
Williams
, “
Extension of ThermoML: The IUPAC standard for thermodynamic data communications (IUPAC Recommendations 2011)
,”
Pure Appl. Chem.
83
,
1937
(
2011
).
56.
M.
Frenkel
,
V.
Diky
,
R. D.
Chirico
,
R. N.
Goldberg
,
H.
Heerklotz
,
J. E.
Ladbury
,
D. P.
Remeta
,
J. H.
Dymond
,
A. R. H.
Goodwin
,
K. N.
Marsh
,
W. A.
Wakeham
,
S. E.
Stein
,
P. L.
Brown
,
E.
Königsberger
, and
P. A.
Williams
, “
ThermoML: An XML-based approach for storage and exchange of experimental and critically evaluated thermophysical and thermochemical property data. 5. Speciation and complex equilibria
,”
J. Chem. Eng. Data
56
,
307
(
2011
).
57.
J. S.
Chickos
,
W. E.
Acree
, and
J. F.
Liebman
, “
Estimating solid–liquid phase change enthalpies and entropies
,”
J. Phys. Chem. Ref. Data
28
,
1535
(
1999
).
58.
J. S.
Chickos
and
W. E.
Acree
, “
Enthalpies of sublimation of organic and organometallic compounds. 1910–2001
,”
J. Phys. Chem. Ref. Data
31
,
537
(
2002
).
59.
J. S.
Chickos
and
W. E.
Acree
, “
Enthalpies of vaporization of organic and organometallic compounds, 1880–2002
,”
J. Phys. Chem. Ref. Data
32
,
519
(
2003
).
60.
W. E.
Acree
and
J. S.
Chickos
, “
Phase change enthalpies and entropies of liquid crystals
,”
J. Phys. Chem. Ref. Data
35
,
1051
(
2006
).
61.
W.
Acree
and
J. S.
Chickos
, “
Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2010
,”
J. Phys. Chem. Ref. Data
39
,
043101
(
2010
).
62.
W.
Acree
and
J. S.
Chickos
, “
Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2015. Part 1. C1–C10
,”
J. Phys. Chem. Ref. Data
45
,
033101
(
2016
).
63.
W.
Acree
and
J. S.
Chickos
, “
Phase transition enthalpy measurements of organic and organometallic compounds and ionic liquids. Sublimation, vaporization, and fusion enthalpies from 1880 to 2015. Part 2. C11 to C192
,”
J. Phys. Chem. Ref. Data
46
,
013104
(
2017
).
64.
W.
Acree
, Jr.
and
J. S.
Chickos
, “
Phase transition enthalpy measurements of organic compounds. An update of sublimation, vaporization and fusion enthalpies from 2016 to 2021
,”
J. Phys. Chem. Ref. Data
(in press) (
2022
).
65.
J.
Chao
,
R. C.
Wilhoit
, and
B. J.
Zwolinski
, “
Ideal gas thermodynamic properties of ethane and propane
,”
J. Phys. Chem. Ref. Data
2
,
427
(
1973
).
66.
A. S.
Rodgers
,
J.
Chao
,
R. C.
Wilhoit
, and
B. J.
Zwolinski
, “
Ideal gas thermodynamic properties of eight chloro- and fluoromethanes
,”
J. Phys. Chem. Ref. Data
3
,
117
(
1974
).
67.
J.
Chao
,
A. S.
Rodgers
,
R. C.
Wilhoit
, and
B. J.
Zwolinski
, “
Ideal gas thermodynamic properties of six chloroethanes
,”
J. Phys. Chem. Ref. Data
3
,
141
(
1974
).
68.
J.
Chao
and
B. J.
Zwolinski
, “
Ideal gas thermodynamic properties of ethylene and propylene
,”
J. Phys. Chem. Ref. Data
4
,
251
(
1975
).
69.
S. S.
Chen
,
R. C.
Wilhoit
, and
B. J.
Zwolinski
, “
Ideal gas thermodynamic properties and isomerization of n-butane and isobutane
,”
J. Phys. Chem. Ref. Data
4
,
859
(
1975
).
70.
S. S.
Chen
,
A. S.
Rodgers
,
J.
Choo
,
R. C.
Wilhoit
, and
B. J.
Zwolinski
, “
Ideal gas thermodynamic properties of six fluoroethanes
,”
J. Phys. Chem. Ref. Data
4
,
441
(
1975
).
71.
S. S.
Chen
,
R. C.
Wilhoit
, and
B. J.
Zwolinski
, “
Ideal gas thermodynamic properties of six chlorofluoromethanes
,”
J. Phys. Chem. Ref. Data
5
,
571
(
1976
).
72.
S. S.
Chen
,
R. C.
Wilhoit
, and
B. J.
Zwolinski
, “
Thermodynamic properties of normal and deuterated methanols
,”
J. Phys. Chem. Ref. Data
6
,
105
(
1977
).
73.
S. S.
Chen
,
S. A.
Kudchadker
, and
R. C.
Wilhoit
, “
Thermodynamic properties of normal and deuterated naphthalenes
,”
J. Phys. Chem. Ref. Data
8
,
527
(
1979
).
74.
R. C.
Wilhoit
,
J.
Chao
, and
K. R.
Hall
, “
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 1. Properties of condensed phases
,”
J. Phys. Chem. Ref. Data
14
,
1
(
1985
).
75.
J.
Chao
,
K. R.
Hall
,
K. N.
Marsh
, and
R. C.
Wilhoit
, “
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal-gas properties
,”
J. Phys. Chem. Ref. Data
15
,
1369
(
1986
).
76.
S. A.
Kudchadker
and
A. P.
Kudchadker
, “
Ideal gas thermodynamic properties of the eight bromo‐ and iodomethanes
,”
J. Phys. Chem. Ref. Data
4
,
457
(
1975
).
77.
S. A.
Kudchadker
and
A. P.
Kudchadker
, “
Ideal gas thermodynamic properties of CH4−(a+b+c+d)FaClbBrcId halomethanes
,”
J. Phys. Chem. Ref. Data
7
,
1285
(
1978
).
78.
S. A.
Kudchadker
and
A. P.
Kudchadker
, “
Ideal-gas thermodynamic properties of selected bromoethanes and iodoethane
,”
J. Phys. Chem. Ref. Data
8
,
519
(
1979
).
79.
E. S.
Domalski
, “
Selected values of heats of combustion and heats of formation of organic compounds containing the elements C, H, N, O, P, and S
,”
J. Phys. Chem. Ref. Data
1
,
221
(
1972
).
80.
E. S.
Domalski
and
E. D.
Hearing
, “
Estimation of the thermodynamic properties of hydrocarbons at 298.15 K
,”
J. Phys. Chem. Ref. Data
17
,
1637
(
1988
).
81.
E. S.
Domalski
and
E. D.
Hearing
, “
Estimation of the thermodynamic properties of C-H-N-O-S-halogen compounds at 298.15 K
,”
J. Phys. Chem. Ref. Data
22
,
805
(
1993
).
82.
R. J. M.
Konings
and
O.
Beneš
, “
The thermodynamic properties of the f-elements and their compounds. I. The lanthanide and actinide metals
,”
J. Phys. Chem. Ref. Data
39
,
043102
(
2010
).
83.
R. J. M.
Konings
,
O.
Beneš
,
A.
Kovács
,
D.
Manara
,
D.
Sedmidubský
,
L.
Gorokhov
,
V. S.
Iorish
,
V.
Yungman
,
E.
Shenyavskaya
, and
E.
Osina
, “
The thermodynamic properties of the f-elements and their compounds. Part 2. The lanthanide and actinide oxides
,”
J. Phys. Chem. Ref. Data
43
,
013101
(
2014
).
84.
E. S.
Domalski
,
W. H.
Evans
, and
E. D.
Hearing
, “
Erratum: Heat capacities and entropies of organic compounds in the condensed phase [J. Phys. Chem. Ref. Data 13, Suppl. 1 (1984)]
,”
J. Phys. Chem. Ref. Data
19
,
1075
(
1990
).
85.
M.
Zábranský
,
V.
Růžička
, and
V.
Majer
, “
Heat capacities of organic compounds in the liquid-state. 1. C1 to C18 1-alkanols
,”
J. Phys. Chem. Ref. Data
19
,
719
(
1990
).
86.
V.
Ruzicka
,
M.
Zabransky
, and
V.
Majer
, “
Heat capacities of organic compounds in liquid state II. C1 to C18 n-alkanes
,”
J. Phys. Chem. Ref. Data
20
,
405
(
1991
).
87.
V.
Ruzicka
and
E. S.
Domalski
, “
Estimation of the heat capacities of organic liquids as a function of temperature using group additivity. I. Hydrocarbon compounds
,”
J. Phys. Chem. Ref. Data
22
,
597
(
1993
).
88.
V.
Ruzicka
and
E. S.
Domalski
, “
Estimation of the heat capacities of organic liquids as a function of temperature using group additivity. II. Compounds of carbon, hydrogen, halogens, nitrogen, oxygen, and sulfur
,”
J. Phys. Chem. Ref. Data
22
,
619
(
1993
).
89.
M.
Zabransky
,
V.
Ruzicka
,
V.
Majer
, and
E. S.
Domalski
, “
Heat capacity of liquids: Volume I—Critical review and recommended values
,”
J. Phys. Chem. Ref. Data, Monogr.
6
, (
1996
).
90.
M.
Zabransky
,
V.
Ruzicka
,
V.
Majer
, and
E. S.
Domalski
, “
Heat capacity of liquids: Volume II—Critical review and recommended values
,”
J. Phys. Chem. Ref. Data, Monogr.
6
, (
1996
).
91.
M.
Zábranský
,
V.
Růžička
, and
E. S.
Domalski
, “
Heat capacity of liquids: Critical review and recommended values. Supplement 1
,”
J. Phys. Chem. Ref. Data
30
,
1199
(
2001
).
92.
M.
Zábranský
and
V.
Růžička
, Jr.
, “
Estimation of the heat capacities of organic liquids as a function of temperature using group additivity: An amendment
,”
J. Phys. Chem. Ref. Data
33
,
1071
(
2004
).
93.
M.
Zabransky
,
Z.
Kolska
,
V.
Ruzicka
, and
E. S.
Domalski
, “
Heat capacity of liquids: Critical review and recommended values. Supplement II
,”
J. Phys. Chem. Ref. Data
39
,
013103
(
2010
).
94.
B.
Ruscic
,
J. E.
Boggs
,
A.
Burcat
,
A. G.
Császár
,
J.
Demaison
,
R.
Janoschek
,
J. M. L.
Martin
,
M. L.
Morton
,
M. J.
Rossi
,
J. F.
Stanton
,
P. G.
Szalay
,
P. R.
Westmoreland
,
F.
Zabel
, and
T.
Bérces
, “
IUPAC critical evaluation of thermochemical properties of selected radicals. Part I
,”
J. Phys. Chem. Ref. Data
34
,
573
(
2005
).
95.
J. M.
Simmie
and
J.
Würmel
, “
An organized collection of theoretical gas-phase geometric, spectroscopic, and thermochemical data of oxygenated hydrocarbons, CxHyOz (x, y = 1, 2; z = 1–8), of relevance to atmospheric, astrochemical, and combustion sciences
,”
J. Phys. Chem. Ref. Data
49
,
023102
(
2020
).
96.
S. M.
Burke
,
J. M.
Simmie
, and
H. J.
Curran
, “
Critical evaluation of thermochemical properties of C1–C4 species: Updated group-contributions to estimate thermochemical properties
,”
J. Phys. Chem. Ref. Data
44
,
013101
(
2015
).
97.
R. D.
Johnson
 III
, Computational Chemistry Comparison and Benchmark DataBase, Standard Reference Database 101, https://cccbdb.nist.gov/; accessed July 21, 2021.
98.
R.
Munro
,
H.
McMurdie
,
H.
Ondik
, and
T.
Vanderah
, “
Phase equilibrium diagrams
,” in , NIST Special Publication 958, edited by
D. R.
Lide
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2001
), pp.
184
187
.
99.
M. L.
Marx
,
A. N.
Link
, and
J. T.
Scott
, “
Economic assessment of the NIST ceramic phase diagram program
,” NIST Planning Report No. 98-3,
1998
.
100.
R.
Butler
,
S.
Adams
, and
M.
Humphreys
,
The American Ceramic Society: 100 Years
(
American Ceramic Society
,
Columbus, OH
,
1998
), pp.
119
120
.
101.
F. P.
Hall
and
H.
Insley
, “
A compilation of phase-rule diagrams of interest to the ceramist and silicate technologist
,”
J. Am. Ceram. Soc.
16
,
463
(
1933
).
102.
F. P.
Hall
and
H.
Insley
, “
Supplement to ‘A compilation of phase-rule diagrams of interest to the ceramist and silicate technologist
,’”
J. Am. Ceram. Soc.
21
,
113
(
1938
).
103.
F. P.
Hall
and
H.
Insley
, “
Phase diagrams for ceramists—An exposition of phase diagrams of heterogeneous equilibria, the mechanics of crystallization in these systems and a compilation of phase diagrams
,”
J. Am. Chem. Soc.
(November 1947).
104.
H. F.
McMurdie
and
F. P.
Hall
, “
Phase diagrams for ceramists: Supplement No. 1
,”
J. Am. Ceram. Soc.
32
,
154
(
1949
).
105.
E. M.
Levin
,
C. R.
Robbins
, and
H. F.
McMurdie
,
Phase Diagrams for Ceramists
(
American Ceramic Society
,
Columbus, OH
,
1964
).
106.
B.
Jaffe
,
R. S.
Roth
, and
S.
Marzullo
, “
Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics
,”
J. Appl. Phys.
25
,
809
(
1954
).
107.
NIST Crystallographic Data Center, https://icsd.nist.gov/; accessed July 21, 2021.
108.
G.
Bergerhoff
,
R.
Hundt
,
R.
Sievers
, and
I. D.
Brown
, “
The inorganic crystal-structure data-base
,”
J. Chem. Inf. Comput. Sci.
23
,
66
(
1983
).
109.
J. K.
Stalick
and
A. D.
Mighell
, “
Crystal data version 1.0 database specifications
,” NBS Technical Note 1229,
1996
.
110.
A.
Belsky
,
M.
Hellenbrandt
,
V. L.
Karen
, and
P.
Luksch
, “
New developments in the inorganic crystal structure database (ICSD): Accessibility in support of materials research and design
,”
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
58
,
364
(
2002
).
111.
L.
Haar
and
J. S.
Gallagher
, “
Thermodynamic properties of ammonia
,”
J. Phys. Chem. Ref. Data
7
,
635
(
1978
).
112.
M. O.
McLinden
and
M. L.
Huber
, “
(R)Evolution of refrigerants
,”
J. Chem. Eng. Data
65
,
4176
(
2020
).
113.
T.
Midgely
, Jr.
and
A. L.
Henne
, “
Organic fluorides as refrigerants
,”
Ind. Eng. Chem.
22
,
542
(
1930
).
114.
NIST Industrial Impacts—A Sampling of Successful Partnerships, NIST Special Publication 872,
1995
, .
115.
The Montreal Protocol on Substances that Deplete the Ozone Layer, United Nations Environment Programme,
1987
, https://ozone.unep.org/treaties/montreal-protocol; accessed July 22, 2021.
116.
H. W.
Woolley
,
R. B.
Scott
, and
F. G.
Brickwedde
, “
Compilation of thermal properties of hydrogen in its various isotopic and ortho-para modifications
,”
J. Res. Natl. Bur. Stand.
41
,
379
(
1948
).
117.
R. D.
McCarty
,
J.
Hord
, and
H. M.
Roder
, “
Selected properties of hydrogen (engineering design data)
,” NIST Monograph 168,
1981
.
118.
R. D.
Goodwin
and
W. M.
Haynes
, “
Thermophysical properties of propane from 85 to 700 K at pressures to 70 MPa
,” NBS Monograph 170,
1982
.
119.
P. R.
Ludtke
, “
Natural gas handbook
,” NBS Internal Report 86-30,
1986
.
120.
D. A.
Didion
, “
The history of NIST’s refrigerant program: I. Zeotropic mixture cycles and heat transfer
,”
ASHRAE Trans.
107
,
688
(
2001
).
121.
G.
Morrison
and
M. O.
McLinden
, “
Application of hard-sphere equation of state to refrigerants and refrigerant mixtures
,” NBS Technical Note 1226,
1986
.
122.
M. O.
McLinden
,
J. S.
Gallagher
, and
G.
Morrison
, NIST Standard Reference Database 23—NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP), Version 1.0,
NIST
,
Gaithersburg, MD
,
1989
.
123.
E. W.
Lemmon
,
I. H.
Bell
,
M. L.
Huber
, and
M. O.
McLinden
, REFPROP: Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Version 10.0,
2018
, https://www.nist.gov/srd/refprop; accessed July 22, 2021.
124.
M. O.
McLinden
and
K.
Watanabe
, “
International collaboration on the thermophysical properties of alternative refrigerants: Results of IEA Annex 18
,” in
20th International Congress of Refrigeration
,
Sydney, Australia
,
September 1999
.
125.
Economic Assessment of the NIST Alternative Refrigerants Research Program, NIST Planning Report 98-1,
1998
.
126.
A. H.
Harvey
and
J. M. H.
Levelt Sengers
, “
Thermodynamic properties of water and steam for power generation
,” in , NIST Special Publication 958, edited by
D. R.
Lide
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2001
), pp.
49
52
.
127.
J. H.
Keenan
and
F. G.
Keyes
,
Thermodynamic Properties of Steam Including Data for the Liquid and Solid Phases
(
John Wiley & Sons
,
New York
,
1936
).
128.
N. S.
Osborne
,
H. F.
Stimson
, and
D. C.
Ginnings
, “
Calorimetric determination of the thermodynamic properties of saturated water in both the liquid and gaseous states from 100 to 374°C
,”
J. Res. Natl. Bur. Stand.
18
,
389
(
1937
).
129.
N. S.
Osborne
,
H. F.
Stimson
, and
E. F.
Fiock
, “
Calorimetric determination of thermal properties of saturated water and steam from 0° to 270°C
,”
J. Res. Natl. Bur. Stand.
5
,
411
(
1930
).
130.
N. S.
Osborne
,
H. F.
Stimson
,
E. F.
Fiock
, and
D. C.
Ginnings
, “
The pressure of saturated water vapor in the range 100° to 374°C
,”
Bur. Stand. J. Res.
10
,
155
(
1933
).
131.
N. S.
Osborne
,
H. F.
Stimson
, and
D. C.
Ginnings
, “
Measurements of heat capacity and heat of vaporization of water in the range 0° to 100°C
,”
J. Res. Natl. Bur. Stand.
23
,
197
(
1939
).
132.
L.
Haar
,
J. S.
Gallagher
, and
G. S.
Kell
,
NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units
(
Hemisphere Publishing Corp.
,
Washington, DC
,
1984
).
134.
W.
Wagner
and
A.
Pruss
, “
The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use
,”
J. Phys. Chem. Ref. Data
31
,
387
(
2002
).
135.
A. H.
Harvey
and
E. W.
Lemmon
, NIST/ASME Steam Properties Database, NIST Standard Reference Database 10,
NIST
,
Gaithersburg, MD
,
2013
.
136.
W.
Wagner
,
J. R.
Cooper
,
A.
Dittmann
,
J.
Kijima
,
H.-J.
Kretzschmar
,
A.
Kruse
,
R.
Marés
,
K.
Oguchi
,
H.
Sato
,
I.
Stocker
,
O.
Sifner
,
Y.
Takaishi
,
I.
Tanishita
,
J.
Trubenbach
, and
T.
Willkommen
, “
The IAPWS Industrial Formulation 1997 for the thermodynamic properties of water and steam
,”
J. Eng. Gas Turbines Power
122
,
150
(
2000
).
137.
W. T.
Parry
,
J. C.
Bellows
,
J. S.
Gallagher
,
A. H.
Harvey
, and
R. D.
Harwood
,
ASME International Steam Tables for Industrial Use
, 3rd ed. (
ASME Press
,
New York
,
2014
).
138.
S. G.
Lias
and
J. E.
Bartmess
, Gas-Phase Ion Thermochemistry, https://webbook.nist.gov/chemistry/ion/; accessed July 22, 2021.
139.
F. H.
Field
and
J. L.
Franklin
,
Electron Impact Phenomena and the Properties of Gaseous Ions
(
Academic Press
,
New York
,
1957
).
140.
J. L.
Franklin
,
J. G.
Dillard
,
H. M.
Rosenstock
,
J. T.
Herron
,
K.
Draxl
, and
F. H.
Field
, “
Ionization potentials, appearance potentials and heats of formation of gaseous positive ions
,”
Natl. Stand. Ref. Data Ser.
25
, (
1969
).
141.
H. M.
Rosenstock
,
K.
Draxl
,
B. W.
Steiner
, and
J. T.
Herron
, “
Energetics of gaseous ions
,”
J. Phys. Chem. Ref. Data
6
(
Suppl. 1
), (
1977
).
142.
R. D.
Levin
and
S. G.
Lias
, “
Ionization potential and appearance potential measurements, 1971-1981
,” NSRDS-NBS 71,
1982
.
143.
S. G.
Lias
,
J. F.
Liebman
, and
R. D.
Levin
, “
Evaluated gas phase basicities and proton affinities of molecules; heats of formation of protonated molecules
,”
J. Phys. Chem. Ref. Data
13
,
695
(
1984
).
144.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
, “
Gas-phase ion and neutral thermochemistry
,”
J. Phys. Chem. Ref. Data
17
(
Suppl. 1
), (
1988
).
145.
S. G.
Lias
and
S. E.
Stein
, NIST Positive Ion Energetics, NIST Standard Reference Database 19A,
NIST
,
Gaithersburg, MD
,
1990
.
146.
J. E.
Bartmess
, NIST Negative Ion Energetics, NIST Standard Reference Database 19B,
NIST
,
Gaithersburg, MD
,
1990
.
147.
E. P.
Hunter
and
S. G.
Lias
, “
Evaluated gas phase basicities and proton affinities of molecules: An update
,”
J. Phys. Chem. Ref. Data
27
,
413
(
1988
).
148.
P. J.
Linstrom
and
W. G.
Mallard
, “
The NIST Chemistry WebBook: A chemical data resource on the internet
,”
J. Chem. Eng. Data
46
,
1059
(
2001
).
149.
M. E.
Jacox
, “
Vibrational and electronic energy levels of polyatomic transient molecules. Supplement B
,”
J. Phys. Chem. Ref. Data
32
,
1
(
2003
).
150.
T.
Shimanouchi
, “
Tables of molecular vibrational frequencies Part 5
,”
J. Phys. Chem. Ref. Data
1
,
189
(
1972
).
151.
T.
Shimanouchi
, “
Tables of molecular vibrational frequencies. Consolidated volume II
,”
J. Phys. Chem. Ref. Data
6
,
993
(
1977
).
152.
V.
Majer
and
V.
Svoboda
,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation
(
Blackwell Scientific Publications
,
Oxford
,
1985
).
153.
K. P.
Huber
and
G. H.
Herzberg
,
Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules
(
Van Nostrand Reinhold
,
New York
,
1979
).
154.
S. G.
Lias
,
J. F.
Liebman
,
R. D.
Levin
,
S. A.
Katafi
, and
S. E.
Stein
, NIST Standard Reference Database 25: Structures and Properties,
NIST Standard Reference Data Program
,
Gaithersburg, MD
,
1994
.
155.
C.
Clifton
,
J.
Gallagher
,
A.
Shamin
,
S. E.
Stein
, and
H.
Zohdi
, NIST Standard Reference Database 35: NIST/EPA Gas-Phase Infrared Database JCAMP Format,
NIST Standard Reference Data Program
,
Gaithersburg, MD
,
1992
.
156.
M.
Jacox
, NIST Standard Reference Database 26: NIST Vibrational and Electronic Energy Levels of Small Polyatomic Transient Molecules Database (VEEL),
NIST Standard Reference Data Program
,
Gaithersburg, MD
,
2009
.
157.
P. M.
Chu
,
F. R.
Guenther
,
G. C.
Rhoderick
, and
W. J.
Lafferty
, NIST Standard Reference Database 79: NIST Quantitative Infrared Database,
NIST Standard Reference Data Program
,
Gaithersburg, MD
,
1999
.
158.
V.
Talrose
,
A. N.
Yermakov
,
A. N.
Leskin
,
A. A.
Usov
,
A. A.
Goncharova
,
N. A.
Messineva
,
N. V.
Usova
,
M. V.
Efimkina
, and
E. V.
Aristova
, UV/Vis Database User’s Guide, https://webbook.nist.gov/chemistry/uv-vis/; accessed December 20, 2021.
159.
T. L.
Myers
,
R. G.
Tonkyn
,
A. M.
Oeck
,
T. O.
Darby
,
J. S.
Loring
,
M. S.
Taubman
,
S. W.
Sharpe
,
J. C.
Birnbaum
, and
T. J.
Johnson
, IARPA/PNNL Liquid Phase IR Spectra, https://webbook.nist.gov/chemistry/silmarils-liquids-n-k/; accessed December 20, 2021.
160.
T. J.
Johnson
,
T. L.
Myers
,
Y.-F.
Su
,
R. G.
Tonkyn
,
M.-R. K.
Kelly-Gorham
, and
T. O.
Darby
, IARPA/PNNL Solid Phase IR Spectra, https://webbook.nist.gov/chemistry/silmarils-solids-hrf-drf/; accessed December 20, 2021.
161.
H. Y.
Afeefy
,
J. F.
Liebman
, and
S. E.
Stein
, NIST Organic Thermochemistry Archive (NOTA), https://webbook.nist.gov/chemistry/thermo/; accessed December 20, 2021.
162.
J. A.
Martinho Simões
, Organometallic Thermochemistry Database, https://webbook.nist.gov/chemistry/om/; accessed December 20, 2021.
163.
E. J.
Heilweil
and
M.
Cambell
, THz Spectral Database, https://webbook.nist.gov/chemistry/thz-ir/; accessed December 20, 2021.
164.
K. C.
Hafner
,
A. M.
Martin
,
N.
Patel
,
M.
Shevchuk
,
N.
Kau
,
A.
Tran
,
J.
Tseytlin
,
D. S.
Graham
,
Y.
Niyonzima
,
S. E.
Wollman
,
A. M.
Newman
,
A. M.
Zhang
,
S. F.
Dermer
,
E. N.
Ho
,
S.
Aggarwal
,
E. W.
Jin
,
S.
Pan
,
M. Y.
Liou
,
J. K.
Skerritt
,
H. M.
Park
,
N. B.
Ravi
,
S. C.
Ness
,
D. X.
Du
,
J. W.
Qiu
,
A. H.
Yang
,
T. C.
Allison
,
K. K.
Irikura
, and
J. F.
Liebman
, Computed 3-D Structures, https://webbook.nist.gov/chemistry/3d-structs/; accessed December 20, 2021.
165.
S. E.
Stein
, NIST Standard Reference Database 1A: NIST/EPA/NIH Mass Spectral Library with Search Program,
NIST Standard Reference Data Program
,
Gaithersburg, MD
,
2020
.
166.
E. W.
Lemmon
,
I. H.
Bell
,
M. L.
Huber
, and
M. O.
McLinden
, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP,
NIST Standard Reference Data Program
,
Gaithersburg, MD
,
2018
.
167.
Jmol: An open-source Java viewer for chemical structures in 3D, http://www.jmol.org/; accessed December 20, 2021.
168.
National Research Council Committee on Kinetics of Chemical Reactions, Tables of Chemical Kinetics—Heterogeneous Reactions, Supplement 1 to NBS Circular 510,
November 1956
, .
169.
A. M.
Bass
and
H. P.
Broida
, “
Stabilization of free radicals at low temperature, summary of the NBS program
,” NBS Monograph 12,
1960
.
170.
A. F.
Trotman-Dickenson
and
G. S.
Milne
, “
Tables of bimolecular gas reactions
,” NSRDS-NBS 9,
1967
.
171.
S. W.
Benson
and
H. E.
O’Neal
, “
Kinetic data on gas phase unimolecular reactions
,” NSRDS-NBS 21,
1970
.
172.
V. N.
Kondratiev
, “
Rate constants of gas phase reactions: Reference book
,” NSRDS COM-72-10014,
1972
.
173.
L. A.
Wall
, “
The mechanisms of pyrolysis oxidation, and burning of organic materials
,” NBS Special Publication 357,
1972
.
174.
D.
Garvin
, A Catalog of Compilation and Data Evaluation Activities in Chemical Kinetics, Photochemistry and Radiation Chemistry, CODATA Bulletin 3,
1971
.
175.
The Presentation of Chemical Kinetics Data in the Primary Literature: Report of the CODATA Task Group on Data for Chemical Kinetics, CODATA Bulletin 13,
1974
.
176.
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
,
J. A.
Kerr
,
J.
Troe
, and
R. T.
Watson
, “
Evaluated kinetic and photochemical data for atmospheric chemistry
,”
J. Phys. Chem. Ref. Data
9
,
295
(
1980
).
177.
R. F.
Hampson
, Jr.
and
D.
Garvin
, Reaction Rate and Photochemical Data for Atmospheric Chemistry: 1977, NBS Special Publication 513,
1978
, .
178.
D. L.
Baulch
,
R. A.
Cox
,
P. J.
Crutzen
,
R. F.
Hampson
,
J. A.
Kerr
,
J.
Troe
, and
R. T.
Watson
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement I CODATA task group on chemical kinetics
,”
J. Phys. Chem. Ref. Data
11
,
327
(
1982
).
179.
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
,
J. A.
Kerr
,
J.
Troe
, and
R. T.
Watson
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement II. CODATA task group on gas phase chemical kinetics
,”
J. Phys. Chem. Ref. Data
13
,
1259
(
1984
).
180.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
,
J. A.
Kerr
, and
J.
Troe
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement-III
,”
Int. J. Chem. Kinet.
21
,
115
(
1989
).
181.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
,
J. A.
Kerr
, and
J.
Troe
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement III. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry
,”
J. Phys. Chem. Ref. Data
18
,
881
(
1989
).
182.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
,
J. A.
Kerr
, and
J.
Troe
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV: IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry
,”
Atmos. Environ., Part A
26
,
1187
(
1992
).
183.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
,
J. A.
Kerr
, and
J.
Troe
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry
,”
J. Phys. Chem. Ref. Data
21
,
1125
(
1992
).
184.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
,
J. A.
Kerr
,
M. J.
Rossi
, and
J.
Troe
, “
Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: Supplement V. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry
,”
J. Phys. Chem. Ref. Data
26
,
521
(
1997
).
185.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
,
J. A.
Kerr
,
M. J.
Rossi
, and
J.
Troe
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry
,”
J. Phys. Chem. Ref. Data
26
,
1329
(
1997
).
186.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
,
J. A.
Kerr
,
M. J.
Rossi
, and
J.
Troe
, “
Evaluated kinetic and photochemical data for atmospheric chemistry, organic species: Supplement VII
,”
J. Phys. Chem. Ref. Data
28
,
191
(
1999
).
187.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
,
J. A.
Kerr
,
M. J.
Rossi
, and
J.
Troe
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VIII, halogen species evaluation for atmospheric chemistry
,”
J. Phys. Chem. Ref. Data
29
,
167
(
2000
).
188.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
J. N.
Crowley
,
R. F.
Hampson
,
R. G.
Hynes
,
M. E.
Jenkin
,
M. J.
Rossi
, and
J.
Troe
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—Gas phase reactions of Ox, HOx, NOx and SOx species
,”
Atmos. Chem. Phys.
4
,
1461
(
2004
).
189.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
J. N.
Crowley
,
R. F.
Hampson
,
R. G.
Hynes
,
M. E.
Jenkin
,
M. J.
Rossi
, and
J.
Troe
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II—Gas phase reactions of organic species
,”
Atmos. Chem. Phys.
6
,
3625
(
2006
).
190.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
J. N.
Crowley
,
R. F.
Hampson
,
R. G.
Hynes
,
M. E.
Jenkin
,
M. J.
Rossi
, and
J.
Troe
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III—Gas phase reactions of inorganic halogens
,”
Atmos. Chem. Phys.
7
,
981
(
2007
).
191.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
J. N.
Crowley
,
R. F.
Hampson
,
R. G.
Hynes
,
M. E.
Jenkin
,
M. J.
Rossi
,
J.
Troe
, and
T. J.
Wallington
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV—Gas phase reactions of organic halogen species
,”
Atmos. Chem. Phys.
8
,
4141
(
2008
).
192.
J. N.
Crowley
,
M.
Ammann
,
R. A.
Cox
,
R. G.
Hynes
,
M. E.
Jenkin
,
A.
Mellouki
,
M. J.
Rossi
,
J.
Troe
, and
T. J.
Wallington
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V—Heterogeneous reactions on solid substrates
,”
Atmos. Chem. Phys.
10
,
9059
(
2010
).
193.
M.
Ammann
,
R. A.
Cox
,
J. N.
Crowley
,
M. E.
Jenkin
,
A.
Mellouki
,
M. J.
Rossi
,
J.
Troe
, and
T. J.
Wallington
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI—Heterogeneous reactions with liquid substrates
,”
Atmos. Chem. Phys.
13
,
8045
(
2013
).
194.
R. A.
Cox
,
M.
Ammann
,
J. N.
Crowley
,
H.
Herrmann
,
M. E.
Jenkin
,
V. F.
McNeill
,
A.
Mellouki
,
J.
Troe
, and
T. J.
Wallington
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII—Criegee intermediates
,”
Atmos. Chem. Phys.
20
,
13497
(
2020
).
195.
A.
Mellouki
,
M.
Ammann
,
R. A.
Cox
,
J. N.
Crowley
,
H.
Herrmann
,
M. E.
Jenkin
,
V. F.
McNeill
,
J.
Troe
, and
T. J.
Wallington
, “
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VIII—Gas-phase reactions of organic species with four, or more, carbon atoms (≥ C4)
,”
Atmos. Chem. Phys.
21
,
4797
(
2021
).
196.
J. A.
Burkholder
,
S. P.
Sander
,
J. P. D.
Abbatt
,
J. R.
Barker
,
C.
Cappa
,
J. D.
Crounse
,
T. S.
Dibble
,
R. E.
Huie
,
C. E.
Kolb
,
M. J.
Kurylo
,
V. L.
Orkin
,
C. J.
Percival
,
D. M.
Wilmouth
, and
P. H.
Wine
, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation No. 19, JPL Publication 19-5, NASA Panel for Data Evaluation, National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 2019, https://jpldataeval.jpl.nasa.gov; accessed July 22, 2021.
197.
R. F.
Hampson
,
R. L.
Brown
,
D.
Garvin
,
J. T.
Herron
,
R. E.
Huie
,
J. D.
McKinley
, and
W.
Tsang
, “
Chemical kinetics data survey I. Rate data for twelve reactions of interest for stratospheric chemistry
,” National Bureau of Standards Report No. 10 692,
National Bureau of Standards
,
Gaithersburg, MD
,
1972
.
198.
R. F.
Hampson
,
W.
Braun
,
D.
Garvin
,
J. T.
Herron
,
R. E.
Huie
,
M. J.
Kurylo
,
A. H.
Laufer
,
H.
Okabe
, and
W.
Tsang
, “
Chemical kinetics data survey II. Photochemical and rate data for fifteen gas phase reactions of interest for stratospheric chemistry
,” National Bureau of Standards Report No. 10 828,
National Bureau of Standards
,
Gaithersburg, MD
,
1972
.
199.
D.
Garvin
and
L. H.
Gevantman
, “
Chemical kinetics data survey III. Selected rate constants for chemical reactions of interest in atmospheric chemistry
,” National Bureau of Standards Report No. 10 867,
National Bureau of Standards
,
Gaithersburg, MD
,
1972
.
200.
D.
Garvin
, “
Chemical kinetics data survey IV. Preliminary tables of chemical data for modelling of the stratosphere
,” NBSIR 73-203,
National Bureau of Standards
,
Gaithersburg, MD
,
1973
.
201.
D.
Garvin
, “
Chemical kinetics data survey V. Sixty-six contributed rate and photochemical data evaluations on ninety-four reaction
,” NBSIR 73-206,
National Bureau of Standards
,
Gaithersburg, MD
,
1973
.
202.
R. F.
Hampson
,
D.
Garvin
,
J. T.
Herron
,
R. E.
Huie
,
M. J.
Kurylo
,
H.
Laufer
,
H.
Okabe
,
M. D.
Scheer
, and
W.
Tsang
, “
Chemical kinetics data survey VI: Photochemical and rate data for twelve gas phase reactions of interest for atmospheric chemistry
,” NBSIR 73-207,
National Bureau of Standards
,
Gaithersburg, MD
,
1973
.
203.
R. T.
Watson
, “
Chemical kinetics data survey VII. Rate constants of ClOx of atmospheric interest
,” NBSIR 74-516,
National Bureau of Standards
,
Gaithersburg, MD
,
1974
.
204.
R. F.
Hampson
W.
Braun
,
R. L.
Brown
,
D.
Garvin
,
J. T.
Herron
,
R. E.
Huie
,
M. J.
Kurylo
,
A. H.
Laufer
,
J. D.
McKinley
,
H.
Okabe
,
M. D.
Scheer
, and
W.
Tsang
, “
Survey of photochemical and rate data for twenty-eight reactions of interest in atmospheric chemistry
,”
J. Phys. Chem. Ref. Data
2
,
267
(
1973
).
205.
R. F.
Hampson
, Jr.
and
D.
Garvin
, “
Chemical kinetic and photochemical data for modelling atmospheric chemistry
,” NBS Technical Note 866,
National Bureau of Standards
,
Gaithersburg, MD
,
1975
.
206.
S. W.
Benson
,
D. M.
Golden
, and
J. R.
Barker
, in
Proceedings of the Symposium on Chemical Kinetics Data for the Upper and Lower Atmosphere, Warrenton, Virginia, September 15–18, 1974
(
Wiley
,
New York
,
1975
).
207.
S. P.
Sander
,
J. B.
Burkholder
,
J. P. D.
Abbat
,
J. R.
Barker
,
R. E.
Huie
,
C. E.
Kolb
,
M. J.
Kurylo
,
V. L.
Orkin
,
D. M.
Wilmouth
, and
P. H.
Wine
, “
Chemical kinetics and photochemical data for use in atmospheric studies a new release by the NASA panel for data evaluation
,” SPARC Newsletter 47,
World Climate Research Programme
,
Munich
,
July 2016
.
208.
IPCC
,
2021: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
, edited by
V.
Masson-Delmotte
,
P.
Zhai
,
A.
Pirani
,
S. L.
Connors
,
C.
Péan
,
S.
Berger
,
N.
Caud
,
Y.
Chen
,
L.
Goldfarb
,
M. I.
Gomis
,
M.
Huang
,
K.
Leitzell
,
E.
Lonnoy
,
J. B. R.
Matthews
,
T. K.
Maycock
,
T.
Waterfield
,
O.
Yelekçi
,
R.
Yu
, and
B.
Zhou
(
Cambridge University Press
,
Cambridge, UK
, August 7, 2021), https://www.ipcc.ch/report/ar6/wg1/; accessed July 22, 2021.
209.
WMO (World Meteorological Organization) Scientific Assessment of Ozone Depletion: 1998, Global Ozone Research and Monitoring Project—Report No. 44, Geneva,
1999
.
210.
WMO (World Meteorological Organization) Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project—Report No. 47, Geneva,
2003
.
211.
WMO (World Meteorological Organization) Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project—Report No. 52, Geneva,
2011
.
212.
WMO (World Meteorological Organization) Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project—Report No. 55, Geneva,
2015
.
213.
WMO (World Meteorological Organization) Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project—Report No. 58, Geneva,
2019
.
214.
W.
Tsang
and
R. F.
Hampson
, “
Chemical kinetic data base for combustion chemistry. Part I. Methane and related-compounds
,”
J. Phys. Chem. Ref. Data
15
,
1087
(
1986
).
215.
W.
Tsang
, “
Chemical kinetic data base for combustion chemistry. Part II. Methanol
,”
J. Phys. Chem. Ref. Data
16
,
471
(
1987
).
216.
W.
Tsang
, “
Chemical kinetic data base for combustion chemistry. Part III. Propane
,”
J. Phys. Chem. Ref. Data
17
,
887
(
1988
).
217.
W.
Tsang
, “
Chemical kinetic data base for combustion chemistry. Part IV. Isobutane
,”
J. Phys. Chem. Ref. Data
19
,
1
(
1990
).
218.
W.
Tsang
, “
Chemical kinetic data base for combustion chemistry Part V. Propene
,”
J. Phys. Chem. Ref. Data
20
,
221
(
1991
).
219.
W.
Tsang
and
J. T.
Herron
, “
Chemical kinetic data base for propellant combustion. I. Reactions involving NO, NO2, HNO, HNO2, HCN and N2O
,”
J. Phys. Chem. Ref. Data
20
,
609
(
1991
).
220.
W.
Tsang
, “
Chemical kinetic data base for propellant combustion. II. Reactions involving CN, NCO, and HNCO
,”
J. Phys. Chem. Ref. Data
21
,
753
(
1992
).
221.
J. A.
Manion
,
R. D.
Huie
,
R. D.
Levin
,
D. R.
Burgess
, Jr.
,
W. L.
Orkin
,
W.
Tsang
,
W. S.
McGivern
,
J. W.
Hudgens
,
V. D.
Knyazev
,
D. R.
Atkinson
,
E.
Chai
,
A. M.
Terenza
,
C.-Y.
Lin
,
T. C.
Allison
,
W. G.
Mallard
,
F.
Westley
,
J. T.
Herron
,
R. F.
Hampson
, and
D. H.
Frizzell
, NIST Chemical Kinetics Database, NIST Standard Reference Database 17, NIST, Gaithersburg, MD, 2015, https://kinetics.nist.gov/; accessed July 22, 2021.
224.
D. R.
Burgess
,
M. R.
Zachariah
,
W.
Tsang
, and
P. R.
Westmoreland
, “
Thermochemical and chemical kinetic data for fluorinated hydrocarbons
,”
Prog. Energy Combust. Sci.
21
,
453
(
1995
).
225.
P. J.
Potts
, “
Principles of atomic spectroscopy
,” in
Treatise on Geochemistry
, 2nd ed., edited by
H. D.
Holland
and
K. K.
Turekian
(
Elsevier
,
Oxford
,
2014
), pp.
171
180
.
226.
W. L.
Wiese
, “
Atomic energy levels and other spectroscopic data
,” in , NIST Special Publication 958, edited by
D. R.
Lide
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2001
), pp.
73
76
.
227.
R. F.
Bacher
and
S.
Goudsmit
,
Atomic Energy States: As Derived from the Analysis of Optical Spectra
(
McGraw-Hill
,
New York
,
1932
).
228.
C. E.
Moore
,
A Multiplet Table of Astrophysical Interest
(
Princeton University Observatory
,
Princeton, NJ
,
1933
), Revised 1945.
229.
230.
C. E.
Moore
, “
Atomic energy levels, Vol. II (chromium through niobium)
,” Circular of the National Bureau of Standards 467,
1952
.
231.
232.
C. E.
Moore
, “
Atomic energy levels, Vol. III (molybdenum through lanthanum and hafnium through actinium)
,” Circular of the National Bureau of Standards 467,
1958
.
234.
W. L.
Wiese
,
M. W.
Smith
, and
B. M.
Glennon
, “
Atomic transition probabilities, Vol. I (hydrogen through neon)
,” NSRDS-NBS 4,
1966
.
235.
W. L.
Wiese
,
M. W.
Smith
, and
B. M.
Miles
, “
Atomic transition probabilities, Vol. II (sodium through calcium)
,” NSRDS-NBS 22,
1969
.
236.
W. L.
Wiese
and
W. C.
Martin
, “
Reference data of atomic spectroscopy—A citation classic commentary on atomic-energy levels derived from the analyses of optical-spectra, Vols. 1-3 by Moore, C. E.
,”
Curr. Contents Phys. Chem. Earth Sci.
47
,
12
(
1990
).
237.
W. L.
Wiese
, “
A Critical Table of Atomic Transition-Probabilities: A Citation Classic Commentary on Atomic Transition Probabilities. Vol. 1: Hydrogen Through Neon
, by
W. L.
Wiese
,
M. W.
Smith
, and
B. M.
Glennon
,” Curr. Contents Phys. Chem. Earth Sci.,
40
,
16
(
1989
).
238.
W. C.
Martin
,
R.
Zalubas
, and
L.
Hagan
, “
Atomic energy levels—The rare-earth elements
,” NSRDS-NBS 60,
1978
.
240.
NIST Atomic Spectroscopy Databases, https://www.nist.gov/pml/atomic-spectroscopy-databases; accessed July 22, 2021.
241.
J. E.
Sansonetti
,
J.
Reader
,
C. J.
Sansonetti
, and
N.
Acquista
, “
Atlas of the spectrum of a platinum neon hollow-cathode reference lamp in the region 1130–4330 Å
,”
J. Res. Natl. Inst. Stand. Technol.
97
,
1
(
1992
).
242.
J. E.
Sansonetti
,
C. J.
Sansonetti
,
J.
Reader
,
N.
Acquista
,
A. M.
Sansonetti
, and
R. A.
Dragoset
, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, https://www.nist.gov/pml/ultraviolet-spectrum-platinum-lamp; accessed July 22, 2021.
243.
A.
Kramida
,
Y.
Ralchenko
, and
J.
Reader
, NIST Atomic Spectra Database, NIST Standard Reference Database 78, https://physics.nist.gov/asd; accessed July 22, 2021.
244.
W. L.
Wiese
, “
Atomic spectroscopic databases on the World Wide Web
,”
Spectrochim. Acta, Part B
52
,
279
(
1997
).
245.
W. L.
Wiese
and
D. E.
Kelleher
, “
Atomic spectra databases on the World Wide Web: An update
,”
Spectrochim. Acta, Part B
54
,
1769
(
1999
).
246.
D. E.
Kelleher
,
W. C.
Martin
,
W. L.
Wiese
,
J.
Sugar
,
J. R.
Fuhr
,
K.
Olsen
,
A.
Musgrove
,
P. J.
Mohr
,
J.
Reader
, and
G. R.
Dalton
, “
The new NIST atomic spectra database
,”
Phys. Scr.
T83
,
158
(
1999
).
247.
D. E.
Kelleher
,
W. C.
Martin
,
W. L.
Wiese
,
J. R.
Fuhr
,
A.
Musgrove
,
K.
Olson
,
P. J.
Mohr
,
J.
Reader
,
J. E.
Sansonetti
, and
L.
Podobedova
, “
NIST databases on atomic spectra
,”
Astron. Soc. Pac. Conf. Ser.
247
,
159
(
2001
).
248.
Y.
Ralchenko
, “
NIST atomic spectra database
,”
Mem. Soc. Astron. Ital.
8
,
96
(
2005
).
249.
A.
Kramida
,
paper presented at the 7th Internatonal Conference on Atomic and Molecular Data and Their Applications: ICAMDATA-2010
,
Vitnius, Lithuania
,
2010
.
250.
A.
Kramida
, “
Using databases for data analysis in laser spectroscopy
,” in
Laser Spectroscopy for Sensing
, edited by
M.
Baudelet
(
Woodhead Publishing
,
Sawston, UK
,
2014
), Chap. 4, pp.
102
124
.
251.
Y.
Ralchenko
and
A.
Kramida
, “
Development of NIST atomic databases and online tools
,”
Atoms
8
,
56
(
2020
).
252.
J. E.
Sansonetti
and
W. C.
Martin
, “
Handbook of basic atomic spectroscopic data
,”
J. Phys. Chem. Ref. Data
34
,
1559
(
2005
).
253.
J. R.
Fuhr
and
W. L.
Wiese
, “
A critical compilation of atomic transition probabilities for neutral and singly ionized iron
,”
J. Phys. Chem. Ref. Data
35
,
1669
(
2006
).
254.
J. E.
Sansonetti
, “
Spectroscopic data for neutral francium (Fr I)
,”
J. Phys. Chem. Ref. Data
36
,
497
(
2007
).
255.
W. L.
Wiese
and
J. R.
Fuhr
, “
Improved critical compilations of selected atomic transition probabilities for neutral and singly ionized carbon and nitrogen
,”
J. Phys. Chem. Ref. Data
36
,
1287
(
2007
).
256.
D. E.
Kelleher
and
L. I.
Podobedova
, “
Atomic transition probabilities of sodium and magnesium. A critical compilation
,”
J. Phys. Chem. Ref. Data
37
,
267
(
2008
).
257.
D. E.
Kelleher
and
L. I.
Podobedova
, “
Atomic transition probabilities of aluminum. A critical compilation
,”
J. Phys. Chem. Ref. Data
37
,
709
(
2008
).
258.
D. E.
Kelleher
and
L. I.
Podobedova
, “
Atomic transition probabilities of silicon. A critical compilation
,”
J. Phys. Chem. Ref. Data
37
,
1285
(
2008
).
259.
J. E.
Sansonetti
, “
Wavelengths, transition probabilities, and energy levels for the spectra of potassium (K I through K XIX)
,”
J. Phys. Chem. Ref. Data
37
,
7
(
2008
).
260.
J. E.
Sansonetti
, “
Wavelengths, transition probabilities, and energy levels for the spectra of sodium (Na I–Na XI)
,”
J. Phys. Chem. Ref. Data
37
,
1659
(
2008
).
261.
L. I.
Podobedova
,
D. E.
Kelleher
, and
W. L.
Wiese
, “
Critically evaluated atomic transition probabilities for sulfur S I–S XV
,”
J. Phys. Chem. Ref. Data
38
,
171
(
2009
).
262.
J. E.
Sansonetti
, “
Wavelengths, transition probabilities, and energy levels for the spectra of cesium (Cs I–Cs LV)
,”
J. Phys. Chem. Ref. Data
38
,
761
(
2009
).
263.
W. L.
Wiese
and
J. R.
Fuhr
, “
Accurate atomic transition probabilities for hydrogen, helium, and lithium
,”
J. Phys. Chem. Ref. Data
38
,
565
(
2009
).
264.
J. R.
Fuhr
and
W. L.
Wiese
, “
Tables of atomic transition probabilities for beryllium and boron
,”
J. Phys. Chem. Ref. Data
39
,
013101
(
2010
).
265.
J. E.
Sansonetti
and
J. J.
Curry
, “
Wavelengths, transition probabilities, and energy levels for the spectra of barium, (Ba III through Ba LVI)
,”
J. Phys. Chem. Ref. Data
39
,
043103
(
2010
).
266.
J. E.
Sansonetti
and
G.
Nave
, “
Wavelengths, transition probabilities, and energy levels for the spectrum of neutral strontium (Sr I)
,”
J. Phys. Chem. Ref. Data
39
,
033103
(
2010
).
267.
J. E.
Sansonetti
, “
Wavelengths, transition probabilities, and energy levels for the spectra of strontium ions (Sr II through Sr XXXVIII)
,”
J. Phys. Chem. Ref. Data
41
,
013102
(
2012
).
268.
A.
Kramida
,
K.
Olsen
, and
Y.
Ralchenko
, NIST LIBS Database, https://physics.nist.gov/PhysRefData/ASD/LIBS/; accessed July 22, 2021.
269.
International Virtual Observatory Alliance, https://ivoa.net/; accessed July 22, 2021.
270.
Virtual Atomic and Molecular Data Centre (VAMDC), https://www.vamdc.org; accessed July 22, 2021.
271.
Y.
Ralchenko
,
R. E. H.
Clark
,
D.
Humbert
,
D. R.
Schultz
,
T.
Kato
, and
Y. J.
Rhee
, “
Development of the atomic and molecular data markup language for internet data exchange
,”
J. Plasma Fusion Res. Ser.
7
,
338
(
2006
).
272.
Y.
Ralchenko
,
R. E. H.
Clark
,
M. L.
Dubernet
,
S.
Gagarin
,
D.
Humbert
,
P. A.
Loboda
,
N.
Moreau
,
E.
Roueff
, and
D. R.
Schultz
, “
Development of new standards for exchange of atomic and molecular data
,”
AIP Conf. Proc.
1125
,
207
(
2009
).
273.
XML Schema for Atoms, Molecules and Solids (XSAMS), https://www-amdis.iaea.org/xsams; accessed July 22, 2021.
274.
A.
Scheeline
, “
Needs for fundamental reference data for analytical atomic spectroscopy: What we lack - Why it matters. Preface of the Proceedings of a Workshop
,”
Spectrochim. Acta
43B
,
1
4
(
1988
).
275.
I. E.
Gordon
,
L. S.
Rothman
,
R. J.
Hargreaves
,
R.
Hashemi
,
E. V.
Karlovets
,
F. M.
Skinner
,
E. K.
Conway
,
C.
Hill
,
R. V.
Kochanov
,
Y.
Tan
,
P.
Wcisło
,
A. A.
Finenko
,
K.
Nelson
,
P. F.
Bernath
,
M.
Birk
,
V.
Boudon
,
A.
Campargue
,
K. V.
Chance
,
A.
Coustenis
,
B. J.
Drouin
,
J. M.
Flaud
,
R. R.
Gamache
,
J. T.
Hodges
,
D.
Jacquemart
,
E. J.
Mlawer
,
A. V.
Nikitin
,
V. I.
Perevalov
,
M.
Rotger
,
J.
Tennyson
,
G. C.
Toon
,
H.
Tran
,
V. G.
Tyuterev
,
E. M.
Adkins
,
A.
Baker
,
A.
Barbe
,
E.
Canè
,
A. G.
Császár
,
A.
Dudaryonok
,
O.
Egorov
,
A. J.
Fleisher
,
H.
Fleurbaey
,
A.
Foltynowicz
,
T.
Furtenbacher
,
J. J.
Harrison
,
J. M.
Hartmann
,
V. M.
Horneman
,
X.
Huang
,
T.
Karman
,
J.
Karns
,
S.
Kassi
,
I.
Kleiner
,
V.
Kofman
,
F.
Kwabia–Tchana
,
N. N.
Lavrentieva
,
T. J.
Lee
,
D. A.
Long
,
A. A.
Lukashevskaya
,
O. M.
Lyulin
,
V. Y.
Makhnev
,
W.
Matt
,
S. T.
Massie
,
M.
Melosso
,
S. N.
Mikhailenko
,
D.
Mondelain
,
H. S. P.
Müller
,
O. V.
Naumenko
,
A.
Perrin
,
O. L.
Polyansky
,
E.
Raddaoui
,
P. L.
Raston
,
Z. D.
Reed
,
M.
Rey
,
C.
Richard
,
R.
Tóbiás
,
I.
Sadiek
,
D. W.
Schwenke
,
E.
Starikova
,
K.
Sung
,
F.
Tamassia
,
S. A.
Tashkun
,
J.
Vander Auwera
,
I. A.
Vasilenko
,
A. A.
Vigasin
,
G. L.
Villanueva
,
B.
Vispoel
,
G.
Wagner
,
A.
Yachmenev
, and
S. N.
Yurchenko
, “
The HITRAN2020 molecular spectroscopic database
,”
J. Quant. Spectrosc. Radiat. Transfer
277
,
107949
(
2022
).
276.
W. E.
Thompson
,
L. S.
Andrews
, and
K. K.
Irikura
, “
Marilyn Esther Jacox
,”
Phys. Today
67
(
5
),
65
(
2014
).
277.
G.
Herzberg
,
Molecular Spectra and Molecular Structure: III. Electronic Spectra and Electronic Structure of Polyatomic Molecules
(
Van Nostrand
,
Princeton, NJ
,
1966
).
278.
M. E.
Jacox
, “
Ground-state vibrational-energy levels of polyatomic transient molecules
,”
J. Phys. Chem. Ref. Data
13
,
945
(
1984
).
279.
M. E.
Jacox
, “
Comparison of the ground-state vibrational fundamentals of diatomic molecules in the gas phase and in inert solid matrices
,”
J. Mol. Spectrosc.
113
,
286
(
1985
).
280.
M. E.
Jacox
, “
Comparison of the electronic energy levels of diatomic-molecules in the gas phase and in inert solid matrices
,”
J. Mol. Struct.
157
,
43
(
1987
).
281.
M. E.
Jacox
, “
Electronic energy levels of small polyatomic transient molecules
,”
J. Phys. Chem. Ref. Data
17
,
269
(
1988
).
282.
M. E.
Jacox
, “
Vibrational and electronic energy levels of polyatomic transient molecules: Supplement 1
,”
J. Phys. Chem. Ref. Data
19
,
1387
(
1990
).
283.
M. E.
Jacox
, “
The vibrational-energy levels of small transient molecules isolated in neon and argon matrices
,”
Chem. Phys.
189
,
149
(
1994
).
284.
M. E.
Jacox
, “
Vibrational and electronic energy levels of polyatomic transient molecules
,”
J. Phys. Chem. Ref. Data, Monogr.
3
,
461
(
1994
).
285.
M. E.
Jacox
, “
Vibrational and electronic energy levels of polyatomic transient molecules. Supplement A
,”
J. Phys. Chem. Ref. Data
27
,
115
(
1998
).
286.
M. E.
Jacox
, “
The spectroscopy of molecular reaction intermediates trapped in the solid rare gases
,”
Chem. Soc. Rev.
31
,
108
(
2002
).
287.
M. E.
Jacox
, “
On walking in the footprints of giants
,”
Annu. Rev. Phys. Chem.
61
,
1
(
2010
).
288.
J. R.
McNesby
and
R.
Klein
, “
Photochemistry of small molecules
,” in , NIST Special Publication 958, edited by
D. R.
Lide
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2001
), pp.
224
226
.
289.
H.
Okabe
,
Photochemistry of Small Molecules
(
Wiley-Interscience
,
New York
,
1978
).
290.
D. R.
Lide
, “
The microwave spectrum of methylamine-d5
,”
Spectrochim. Acta
8
,
311
(
1956
).
291.
L. J.
Nugent
,
D. E.
Mann
, and
D. R.
Lide
, “
Microwave structure determinations on tertiary butyl acetylene and tertiary butyl cyanide
,”
J. Chem. Phys.
36
,
965
(
1962
).
292.
W. J.
Lafferty
,
D. R.
Lide
, and
R. A.
Toth
, “
Infrared and microwave spectra of ClCN
,”
J. Chem. Phys.
43
,
2063
(
1965
).
293.
A. G.
Maki
and
D. R.
Johnson
, “
Microwave-spectra of carbonyl sulfide: Measurements of ground-state and vibrationally excited O-16, C-13, S-32, O-18, C-12, S-32, and other isotopic species
,”
J. Mol. Spectrosc.
47
,
226
(
1973
).
294.
F. J.
Lovas
and
E.
Tiemann
, “
Microwave spectral tables I. Diatomic molecules
,”
J. Phys. Chem. Ref. Data
3
,
609
(
1974
).
295.
F. J.
Lovas
and
P. H.
Krupenie
, “
Microwave spectra of molecules of astrophysical interest VII. Carbon monoxide, carbon monosulfide, and silicon monoxide
,”
J. Phys. Chem. Ref. Data
3
,
245
(
1974
).
296.
R. D.
Suenram
,
F. J.
Lovas
, and
D. R.
Johnson
, “
Microwave spectrum of ethyl hypochlorite
,”
J. Mol. Spectrosc.
69
,
458
(
1978
).
297.
W. J.
Lafferty
and
F. J.
Lovas
, “
Microwave spectra of molecules of astrophysical interest. XIII. Cyanoacetylene
,”
J. Phys. Chem. Ref. Data
7
,
441
(
1978
).
298.
F. J.
Lovas
, “
Microwave spectral tables II. Triatomic molecules
,”
J. Phys. Chem. Ref. Data
7
,
1445
(
1978
).
299.
F. J.
Lovas
,
H.
Lutz
, and
H.
Drezler
, “
Microwave spectra of molecules of astrophysical interest. XVIII. Dimethyl ether
,”
J. Phys. Chem. Ref. Data
8
,
1051
(
1979
).
300.
F. J.
Lovas
, “
Microwave-spectra of molecules of astrophysical interest. XXI. Ethanol (C2H5OH) and propionitrile (C2H5CN)
,”
J. Phys. Chem. Ref. Data
11
,
251
(
1982
).
301.
F. J.
Lovas
, “
Microwave spectra of molecules of astrophysical interest. XXII. Sulfur dioxide (SO2)
,”
J. Phys. Chem. Ref. Data
14
,
395
(
1985
).
302.
F. J.
Lovas
, “
Recommended rest frequencies for observed interstellar molecular microwave transitions—1985 revision
,”
J. Phys. Chem. Ref. Data
15
,
251
(
1986
).
303.
F. J.
Lovas
and
R. D.
Suenram
, “
Microwave spectral tables. III. Hydrocarbons, CH to C10H10
,”
J. Phys. Chem. Ref. Data
18
,
1245
(
1989
).
304.
F. J.
Lovas
, “
Recommended rest frequencies for observed interstellar molecular microwave transitions—1991 revision
,”
J. Phys. Chem. Ref. Data
21
,
181
(
1992
).
305.
G. T.
Fraser
,
R. D.
Suenram
, and
C. L.
Lugez
, “
Investigation of conformationally rich molecules: Rotational spectra of fifteen conformational isomers of 1-octene
,”
J. Phys. Chem. A
105
,
9859
(
2001
).
306.
F. J.
Lovas
, “
NIST recommended rest frequencies for observed interstellar molecular microwave transitions—2002 revision
,”
J. Phys. Chem. Ref. Data
33
,
177
(
2004
).
307.
R. D.
Nelson
,
D. R.
Lide
, and
A. A.
Maryott
, “
Selected values of electric dipole moments for molecules in the gas phase
,”
NSRDS-NBS 10
,
1967
.
308.
F. J.
Lovas
and
R. D.
Suenram
, “
Pulsed-beam Fourier-transform microwave measurements on OCS and rare-gas complexes of OCS with Ne, Ar, and Kr
,”
J. Chem. Phys.
87
,
2010
(
1987
).
309.
D. R.
Johnson
,
F. J.
Lovas
, and
W. H.
Kirchhoff
, “
Microwave spectra of molecules of astrophysical interest: I. Formaldehyde, formamide, and thioformaldehyde
,”
J. Phys. Chem. Ref. Data
1
,
1011
(
1972
).
310.
W. H.
Kirchoff
,
D. R.
Johnson
, and
F. J.
Lovas
, “
Microwave spectra of molecules of astrophysical interest: II. Methylenimine
,”
J. Phys. Chem. Ref. Data
2
,
1
(
1973
).
311.
R. M.
Lees
,
F. J.
Lovas
,
W. H.
Kirchhoff
, and
D. R.
Johnson
, “
Microwave spectra of molecules of astrophysical interest: III. Methanol
,”
J. Phys. Chem. Ref. Data
2
,
205
(
1973
).
312.
A. G.
Maki
, “
Microwave spectra of molecules of astrophysical interest VI. Carbonyl sulfide and hydrogen cyanide
,”
J. Phys. Chem. Ref. Data
3
,
221
(
1974
).
313.
A.
Bauder
,
F. J.
Lovas
, and
D. R.
Johnson
, “
Microwave spectra of molecules of astrophysical interest IX. Acetaldehyde
,”
J. Phys. Chem. Ref. Data
5
,
53
(
1976
).
314.
G.
Winnewisser
,
W. H.
Hocking
, and
M. C. L.
Gerry
, “
Microwave spectra of molecules of astrophysical interest X. Isocyanic acid
,”
J. Phys. Chem. Ref. Data
5
,
79
(
1976
).
315.
M. D.
Harmony
,
V. W.
Laurie
,
R. L.
Kuczkowski
,
R. H.
Schwendeman
,
D. A.
Ramsay
,
F. J.
Lovas
,
W. J.
Lafferty
, and
A. G.
Maki
, “
Molecular structures of gas-phase polyatomic molecules determined by spectroscopic methods
,”
J. Phys. Chem. Ref. Data
8
,
619
(
1979
).
316.
I.
Kleiner
,
F. J.
Lovas
, and
M.
Godefroid
, “
Microwave spectra of molecules of astrophysical interest. XXIII. Acetaldehyde
,”
J. Phys. Chem. Ref. Data
25
,
1113
(
1996
).
317.
L.-H.
Xu
and
F. J.
Lovas
, “
Microwave spectra of molecules of astrophysical interest. XXIV. Methanol (CH3OH and 13CH3OH)
,”
J. Phys. Chem. Ref. Data
26
,
17
(
1997
).
318.
V.
Ilyushin
and
F. J.
Lovas
, “
Microwave spectra of molecules of astrophysical interest. XXV. Methylamine
,”
J. Phys. Chem. Ref. Data
36
,
1141
(
2007
).
319.
V.
Ilyushin
,
I.
Kleiner
, and
F. J.
Lovas
, “
Microwave spectra of molecules of astrophysical interest. XXVI. Acetic acid (CH3COOH)
,”
J. Phys. Chem. Ref. Data
37
,
97
(
2008
).
320.
T.
Shimanouchi
, “
Tables of molecular vibrational frequencies, Part 1
,” NSRDS-NBS 6,
1967
.
321.
T.
Shimanouchi
, “
Tables of molecular vibrational frequencies, Part 2
,” NSRDS-NBS 11,
1967
.
322.
T.
Shimanouchi
, “
Tables of molecular vibrational frequencies, Part 3
,” NSRDS-NBS 17,
1968
.
323.
T.
Shimanouchi
, “
Tables of molecular vibrational frequencies: Part 6
,”
J. Phys. Chem. Ref. Data
2
,
121
(
1973
).
324.
T.
Shimanouchi
, “
Tables of molecular vibrational frequencies: Part 7
,”
J. Phys. Chem. Ref. Data
2
,
225
(
1973
).
325.
T.
Shimanouchi
, “
Tables of molecular vibrational frequencies. Part 8
,”
J. Phys. Chem. Ref. Data
3
,
269
(
1974
).
326.
T.
Shimanouchi
,
H.
Matsuura
,
Y.
Ogawa
, and
I.
Harada
, “
Tables of molecular vibrational frequencies
,”
J. Phys. Chem. Ref. Data
7
,
1123
(
1978
).
327.
T.
Shimanouchi
,
H.
Matsuura
,
Y.
Ogawa
, and
I.
Harada
, “
Tables of molecular vibrational frequencies Part 10
,”
J. Phys. Chem. Ref. Data
9
,
1149
(
1980
).
328.
NIST/EPA Vapor Phase IR Library, Sadtler Research Labs Under US-EPA Contract,
1992
.
329.
A. L.
Smith
, in
The Coblentz Society Desk Book of Infrared Spectra
, edited by
C. D.
Carver
(
The Coblentz Society
,
Kirkwood, MO
,
1982
).
330.
Tables of wavenumbers for the calibration of infrared spectrometers
,” Pure Appl. Chem.
1
,
537
(
1960
).
331.
Specifications for evaluation of infrared reference spectra
,” Anal. Chem.
38
,
A27
(
1966
).
332.
Coblentz Society specifications for evaluation of research quality analytical infrared spectra (class II)
,” Anal. Chem.
47
,
A945
(
1975
).
333.
P. R.
Griffiths
,
A. R. H.
Cole
,
P. L.
Hanst
,
W. J.
Lafferty
,
R. N.
Jones
,
R. J.
Obremski
, and
J. H.
Shaw
, “
Specifications for infrared reference spectra of molecules in the vapor-phase
,”
Appl. Spectrosc.
37
,
458
(
1983
).
334.
K.
Blaha
, “
IUPAC recommendations—Specifications of infrared reference spectra of molecules in the vapor phase
,”
Chem. Listy
79
,
1071
(
1985
).
335.
J. G.
Grasselli
, “
Specifications for infrared reference spectra of molecules in the vapor phase
,”
Pure Appl. Chem.
59
,
673
(
1987
).
336.
T. R.
Hogness
and
H. M.
Kvalnes
, “
The ionization processes in methane interpreted by the mass spectrograph
,”
Phys. Rev.
32
,
942
(
1928
).
337.
A. K.
Brewer
and
V. H.
Dibeler
, “
Mass spectrometric analyses of hydrocarbon and gas mixtures
,”
J. Res. Natl. Bur. Stand.
35
,
125
(
1945
).
338.
S. R.
Heller
, “
The history of the NIST/EPA/NIH mass spectral database
,” in
Today’s Chemist at Work
(
1999
), Vol. 8, p.
45
.
339.
S. E.
Stein
, “
Estimating probabilities of correct identification from results of mass-spectral library searches
,”
J. Am. Soc. Mass Spectrom.
5
,
316
(
1994
).
340.
S. E.
Stein
and
D. R.
Scott
, “
Optimization and testing of mass spectral library search algorithms for compound identification
,”
J. Am. Soc. Mass Spectrom.
5
,
859
(
1994
).
341.
S. E.
Stein
, “
Chemical substructure identification by mass spectral library searching
,”
J. Am. Soc. Mass Spectrom.
6
,
644
(
1995
).
342.
S. E.
Stein
, “
An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data
,”
J. Am. Soc. Mass Spectrom.
10
,
770
(
1999
).
343.
V. I.
Babushok
,
P. J.
Linstrom
,
J. J.
Reed
,
I. G.
Zenkevich
,
R. L.
Brown
,
W. G.
Mallard
, and
S. E.
Stein
, “
Development of a database of gas chromatographic retention properties of organic compounds
,”
J. Chromatogr. A
1157
,
414
(
2007
).
344.
S.
Stein
, “
Mass spectral reference libraries: An ever-expanding resource for chemical identification
,”
Anal. Chem.
84
,
7274
(
2012
).
345.
Y.
Simón-Manso
,
R.
Marupaka
,
X.
Yan
,
Y.
Liang
,
K. H.
Telu
,
Y.
Mirokhin
, and
S. E.
Stein
, “
Mass spectrometry fingerprints of small-molecule metabolites in biofluids: Building a spectral library of recurrent spectra for urine analysis
,”
Anal. Chem.
91
,
12021
(
2019
).
346.
P.
Ausloos
,
C. L.
Clifton
,
S. G.
Lias
,
A. I.
Mikaya
,
S. E.
Stein
,
D. V.
Tchekhovskoi
,
O. D.
Sparkman
,
V.
Zaikin
, and
D.
Zhu
, “
The critical evaluation of a comprehensive mass spectral library
,”
J. Am. Soc. Mass Spectrom.
10
,
287
(
1999
).
347.
W. E.
Wallace
,
W.
Ji
,
D. V.
Tchekhovskoi
,
K. W.
Phinney
, and
S. E.
Stein
, “
Mass spectral library quality assurance by inter-library comparison
,”
J. Am. Soc. Mass Spectrom.
28
,
733
(
2017
).
348.
Organisation for the Prohibition of Chemical Weapons 2013 Nobel Prize for Peace, https://www.opcw.org/about/nobel-peace-prize; accessed July 22, 2021.
349.
NIST Standard Reference Database 1C, NIST Peptide Tandem Mass Spectral Libraries, https://www.nist.gov/srd/nist-standard-reference-database-1c; accessed July 22, 2021.
350.
Q.
Dong
,
X.
Yan
,
L. E.
Kilpatrick
,
Y.
Liang
,
Y. A.
Mirokhin
,
J. S.
Roth
,
P. A.
Rudnick
, and
S. E.
Stein
, “
Tandem mass spectral libraries of peptides in digests of individual proteins: Human serum albumin (HSA)
,”
Mol. Cell. Proteomics
13
,
2435
(
2014
).
351.
H.
Lam
,
E. W.
Deutsch
,
J. S.
Eddes
,
J. K.
Eng
,
N.
King
,
S. E.
Stein
, and
R.
Aebersold
, “
Development and validation of a spectral library searching method for peptide identification from MS/MS
,”
Proteomics
7
,
655
(
2007
).
352.
H.
Lam
,
E. W.
Deutsch
,
J. S.
Eddes
,
J. K.
Eng
,
S. E.
Stein
, and
R.
Aebersold
, “
Building consensus spectral libraries for peptide identification in proteomics
,”
Nat. Methods
5
,
873
(
2008
).
353.
NIST Tandem Mass Spectral Library, https://www.nist.gov/programs-projects/tandem-mass-spectral-library; accessed July 22, 2021.
354.
X.
Yang
,
P.
Neta
, and
S. E.
Stein
, “
Quality control for building libraries from electrospray ionization tandem mass spectra
,”
Anal. Chem.
86
,
6393
(
2014
).
355.
CODATA Task Group on the Fundamental Constants, http://www.codata.org/committees-and-groups/fundamental-physical-constants; accessed July 22, 2021.
356.
E. R.
Cohen
and
B. N.
Taylor
, “
The 1973 least-squares adjustment of the fundamental constants
,”
J. Phys. Chem. Ref. Data
2
,
663
(
1973
).
357.
F. D.
Rossini
, “
Values of the fundamental constants for chemistry
,”
Pure Appl. Chem.
9
,
453
(
1964
).
358.
Research Concerning Metrology and Fundamental Constants, Report Subcommittee of the Committee on Fundamental Constants,
National Academy Press
,
Washington, DC
,
1983
.
359.
International Critical Tables of Numerical Data, Physics, Chemistry and Technology
(
McGraw-Hill
,
New York
,
1926
), Vol. 1.
360.
R. T.
Birge
, “
The most probable value of certain basic constants
,”
Science
64
,
180
(
1926
).
361.
R. T.
Birge
, “
Probable values of the general physical constants
,”
Rev. Mod. Phys.
1
,
1
(
1929
).
362.
R. T.
Birge
, “
On the values of fundamental atomic constants
,”
Phys. Rev.
52
,
241
(
1937
).
363.
R. T.
Birge
, “
A new table of values of the general physical constants (as of August, 1941)
,”
Rev. Mod. Phys.
13
,
233
(
1941
).
364.
J. W. M.
Dumond
, “
The 1947 values of the atomic constants and the revision of the Faraday constant
,”
Phys. Rev.
77
,
411
(
1950
).
365.
F. D.
Rossini
,
F. T.
Gucker
,
H. L.
Johnston
,
L.
Pauling
, and
G. W.
Vinal
, “
Status of the values of the fundamental constants for physical chemistry as of July 1, 1951
,”
J. Am. Chem. Soc.
74
,
2699
(
1952
).
366.
J. W. M.
Dumond
and
E. R.
Cohen
, “
Least-squares adjustment of the atomic constants, 1952
,”
Rev. Mod. Phys.
25
,
691
(
1953
).
367.
E. R.
Cohen
and
J. W. M.
Dumond
, “
Our knowledge of fundamental constants of physics and chemistry in 1965
,”
Rev. Mod. Phys.
37
,
537
(
1965
).
368.
E. R.
Cohen
, “
Review of recent work in determination of fundamental physical constants
,”
Nuovo Cimento
4
,
839
(
1966
).
369.
E. R.
Cohen
, “
Review of recent work in determination of fundamental physical constants
,”
Science
152
,
673
(
1966
).
370.
J. W. M.
Dumond
, “
Present key importance of fine structure constant alpha to a better knowledge of all fundamental physical constants
,”
Z. Naturforsch., A
21
,
70
(
1966
).
371.
B. N.
Taylor
,
W. H.
Parker
, and
D. N.
Langenberg
, “
Determination of e/h, using macroscopic quantum phase coherence in superconductors: Implications for quantum electrodynamics and fundamental physical constants
,”
Rev. Mod. Phys.
41
,
375
(
1969
).
372.
B. N.
Taylor
,
D. N.
Langenberg
, and
W. H.
Parker
, “
Fundamental physical constants
,”
Sci. Am.
223
,
62
(
1970
).
373.
B. N.
Taylor
, “
Report on international conference on precision measurement and fundamental constants
,”
Metrologia
7
,
39
(
1971
).
374.
Fundamental Constants Data Center (FCDC), https://www.nist.gov/pml/quantum-measurement-division/fundamental-constants-data-center; accessed July 22, 2021.
375.
E. R.
Cohen
and
B. N.
Taylor
, “
The 1986 adjustment of the fundamental physical constants
,”
Rev. Mod. Phys.
59
,
1121
(
1987
).
376.
E. R.
Cohen
and
B. N.
Taylor
, “
The 1986 adjustment of the fundamental physical constants
,”
J. Phys. Chem. Ref. Data
17
,
1795
(
1988
).
377.
P. J.
Mohr
and
B. N.
Taylor
, “
CODATA recommended values of the fundamental physical constants: 1998
,”
J. Phys. Chem. Ref. Data
28
,
1713
(
1999
).
378.
P. J.
Mohr
and
B. N.
Taylor
, “
CODATA recommended values of the fundamental physical constants: 1998
,”
Rev. Mod. Phys.
72
,
351
(
2000
).
379.
P. J.
Mohr
and
B. N.
Taylor
, “
CODATA recommended values of the fundamental physical constants: 2002
,”
Rev. Mod. Phys.
77
,
1
(
2005
).
380.
P. J.
Mohr
,
B. N.
Taylor
, and
D. B.
Newell
, “
CODATA recommended values of the fundamental physical constants: 2006
,”
Rev. Mod. Phys.
80
,
633
(
2008
).
381.
P. J.
Mohr
,
B. N.
Taylor
, and
D. B.
Newell
, “
CODATA recommended values of the fundamental physical constants: 2006
,”
J. Phys. Chem. Ref. Data
37
,
1187
(
2008
).
382.
P. J.
Mohr
,
B. N.
Taylor
, and
D. B.
Newell
, “
CODATA recommended values of the fundamental physical constants: 2010
,”
Rev. Mod. Phys.
84
,
1527
(
2012
).
383.
P. J.
Mohr
,
B. N.
Taylor
, and
D. B.
Newell
, “
CODATA recommended values of the fundamental physical constants: 2010
,”
J. Phys. Chem. Ref. Data
41
,
043109
(
2012
).
384.
P. J.
Mohr
,
D. B.
Newell
, and
B. N.
Taylor
, “
CODATA recommended values of the fundamental physical constants: 2014
,”
Rev. Mod. Phys.
88
,
035009
(
2016
).
385.
P. J.
Mohr
,
D. B.
Newell
, and
B. N.
Taylor
, “
CODATA recommended values of the fundamental physical constants: 2014
,”
J. Phys. Chem. Ref. Data
45
,
043102
(
2016
).
386.
D. B.
Newell
,
F.
Cabiati
,
J.
Fischer
,
K.
Fujii
,
S. G.
Karshenboim
,
H. S.
Margolis
,
E.
de Mirandés
,
P. J.
Mohr
,
F.
Nez
,
K.
Pachucki
,
T. J.
Quinn
,
B. N.
Taylor
,
M.
Wang
,
B. M.
Wood
, and
Z.
Zhang
, “
The CODATA 2017 values of h, e, k, and NA for the revision of the SI
,”
Metrologia
55
,
L13
(
2018
).
387.
P. J.
Mohr
,
D. B.
Newell
,
B. N.
Taylor
, and
E.
Tiesinga
, “
Data and analysis for the CODATA 2017 special fundamental constants adjustment
,”
Metrologia
55
,
125
(
2018
).
388.
Resolution 1 of the 26th General Conference on Weights and Measures (CGPM), On the revision of the International System of Units (SI), https://www.bipm.org/en/committees/cg/cgpm/26-2018/resolution-1; accessed July 22, 2021.
389.
I. M.
Mills
,
P. J.
Mohr
,
T. J.
Quinn
,
B. N.
Taylor
, and
E. R.
Williams
, “
Adapting the International System of Units to the twenty-first century
,”
Philos. Trans. R. Soc., A
369
,
3907
(
2011
).
390.
M.
Stock
,
R.
Davis
,
E.
de Mirandés
, and
M. J. T.
Milton
, “
The revision of the SI—the result of three decades of progress in metrology
,”
Metrologia
56
,
022001
(
2019
).
391.
E.
Tiesinga
,
P. J.
Mohr
,
D. B.
Newell
, and
B. N.
Taylor
, “
CODATA recommended values of the fundamental physical constants: 2018
,”
J. Phys. Chem. Ref. Data
50
,
033105
(
2021
).
392.
E.
Tiesinga
,
P. J.
Mohr
,
D. B.
Newell
, and
B. N.
Taylor
, “
CODATA recommended values of the fundamental physical constants: 2018
,”
Rev. Mod. Phys.
93
,
025010
(
2021
).
393.
CODATA Internationally Recommended Values of the Fundamental Physical Constants, http://physics.nist.gov/constants; accessed July 22, 2021.
394.
The IUPAC International Chemical Identifier (InChI), http://www.iupac.org/inchi/; accessed July 22, 2021.
395.
S. E.
Stein
,
S. R.
Heller
, and
D. V.
Tchekhovskoi
, “
Toward the development of a standard chemical identifier
,”
Abs. Pap. Am. Chem. Soc
222
,
U267
(
2001
).
396.
S. E.
Stein
,
S. R.
Heller
, and
D.
Tchekhovskoi
, “
An open standard for chemical structure representation: The IUPAC chemical identifier
,” in
Proceedings of the International Chemical Information Conference
,
Nimes, France
,
2003
.
397.
S. L.
Rovner
, “
Chemical ‘naming’ method unveiled
,”
Chem. Eng. News
83
(
34
),
39
(
2005
).
398.
W. A.
Warr
, “
Representation of chemical structures
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
557
(
2011
).
399.
S.
Heller
,
A.
McNaught
,
S.
Stein
,
D.
Tchekhovskoi
, and
I.
Pletnev
, “
InChI: The worldwide chemical structure identifier standard
,”
J. Cheminf.
5
,
7
(
2013
).
400.
V. D.
Hähnke
,
S.
Kim
, and
E. E.
Bolton
, “
PubChem chemical structure standardization
,”
J. Cheminf.
10
,
36
(
2018
).
401.
J. M.
Goodman
,
I.
Pletnev
,
P.
Thiessen
,
E.
Bolton
, and
S. R.
Heller
, “
InChI version 1.06: Now more than 99.99% reliable
,”
J. Cheminf.
13
,
40
(
2021
).
402.
D. R.
Burgess
,
J. A.
Manion
, and
C. J.
Hayes
, “
Data formats for elementary gas phase kinetics, Part 1: Unique representations of species at the molecular level
,”
Int. J. Chem. Kinet.
46
,
640
(
2014
).
403.
D. R.
Burgess
,
J. A.
Manion
, and
C. J.
Hayes
, “
Data formats for elementary gas-phase kinetics: Part 2. Unique representations of reactions
,”
Int. J. Chem. Kinet.
47
,
334
(
2015
).
404.
D. R.
Burgess
,
J. A.
Manion
, and
C. J.
Hayes
, “
Data formats for elementary gas phase kinetics, Part 3: Reaction classification
,”
Int. J. Chem. Kinet.
47
,
361
(
2015
).
405.
, NBS Applied Mathematics Series Vol. 55, edited by
M.
Abramowitz
and
I. A.
Stegun
(
National Bureau of Standards
,
Gaithersburg, MD
,
1964
).
406.
R. F.
Boisvert
and
D. W.
Lozier
, “
Handbook of mathematical functions
,” in , NIST Special Publication 958, edited by
D. R.
Lide
(
National Bureau of Standards
,
Gaithersburg, MD
,
2001
), pp.
135
139
.
407.
A. N.
Lowan
, “
The computation laboratory of the National Bureau of Standards
,”
Scr. Math.
15
,
33
(
1949
).
408.
Tables of the Bessel Functions Y0(x), Y1(x), K0(x), K1(x), 0 ≤ x ≤ 1
, NBS Applied Mathematics Series Vol. 1, edited by
M.
Abramowitz
and
I. A.
Stegun
(
National Bureau of Standards
,
Gaithersburg, MD
,
1948
).
409.
NIST Digital Library of Mathematical Functions, https://dlmf.nist.gov/; accessed July 21, 2021.
410.
Making Open and Machine Readable the New Default for Government Information, Executive Order 13642, The White House (May 9, 2013), https://www.govinfo.gov/content/pkg/CFR-2014-title3-vol1/pdf/CFR-2014-title3-vol1-eo13642.pdf; accessed July 22, 2021.
411.
Open Data Policy—Managing Information as an Asset, OMB Memorandum M-13-13 (May 9, 2013), https://www.whitehouse.gov/sites/default/files/omb/memoranda/2013/m-13-13.pdf; accessed July 22, 2021.
412.
NIST Office of Data and Informatics (ODI), https://www.nist.gov/mml/odi; accessed July 22, 2021.
413.
Public Access to NIST Research, https://www.nist.gov/open; accessed July 22, 2021.
414.
NIST Publications, https://www.nist.gov/publications; accessed July 22, 2021.
415.
NIST Science Data Portal, https://data.nist.gov/sdp; accessed July 22, 2021.
416.
NIST Research Data, https://www.nist.gov/mml/odi/research-data; accessed July 22, 2021.
417.
H. G.
Semerjian
, “
NIST: The crown jewel of the federal S&T enterprise!
,”
NIST Spec. Publ.
(to be published).
418.
, NIST Special Publication 958, edited by
D. R.
Lide
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2001
).
419.
J. R.
Rumble
, Jr.
, “
Critical data for critical needs
,” in , NIST Special Publication 958, edited by
D. R.
Lide
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2001
), pp.
291
293
.
You do not currently have access to this content.