The redefinition of the kelvin has increased focus on thermometry techniques that use the newly fixed value of the Boltzmann constant to realize thermodynamic temperature. One such technique that has advanced considerably in recent years is refractive-index gas thermometry. Generalized as refractive-index gas metrology (RIGM), this also includes a range of applications outside of temperature realizations, such as pressure standards and measurements of the physical properties of gases. Here, the current data situation in the field is reviewed, encompassing the latest developments and remaining challenges, in order to suggest possible approaches for reducing RIGM uncertainties and improving RIGM applications. New analyses of existing experimental literature data are presented for the second density virial coefficient Bρ of helium, neon, argon, and nitrogen; the third density virial coefficient Cρ of nitrogen; and the third dielectric virial coefficient Cε of helium, neon, and argon. A need is identified for more accurate reference-quality datasets to be measured or calculated in several areas, with robust uncertainty budgets, to support future RIGM advancements. The most urgent of these are the bulk modulus of copper; thermodynamic accuracy of the International Temperature Scale of 1990; molar optical refractivity AR of neon, argon, and nitrogen; diamagnetic susceptibility χ0 of neon and argon; second density virial coefficient Bρ of argon; third dielectric virial coefficient Cε of helium, neon, and argon; and third optical refractivity virial coefficient CR of helium and neon.

1.
M.
Stock
,
R.
Davis
,
E.
de Mirandés
, and
M. J. T.
Milton
, “
The revision of the SI—The result of three decades of progress in metrology
,”
Metrologia
56
,
022001
(
2019
).
2.
BIPM
,
The International System of Units
, 9th ed., SI Brochure version 1.08 (
BIPM, Sèvres
,
France
,
2019
), ISBN: 978-92-822-2272-0, https://www.bipm.org/en/publications/si-brochure.
3.
CCT
, Mise en pratique for the definition of the kelvin in the SI, BIPM web site, https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-kelvin.pdf,
2019
.
4.
P. M. C.
Rourke
,
C.
Gaiser
,
B.
Gao
,
D.
Madonna Ripa
,
M. R.
Moldover
,
L.
Pitre
, and
R. J.
Underwood
, “
Refractive-index gas thermometry
,”
Metrologia
56
,
032001
(
2019
).
5.
P. M. C.
Rourke
, “
NRC microwave refractive index gas thermometry implementation between 24.5 K and 84 K
,”
Int. J. Thermophys.
38
,
107
(
2017
).
6.
J.
Cui
,
X.-J.
Feng
,
H.
Lin
,
J.-T.
Zhang
, and
K.-W.
Huan
, “
Thermodynamic temperature measurement using single cylindrical microwave resonator
,”
Acta Metrol. Sin.
39
,
255
(
2018
) (in Chinese).
7.
P. M. C.
Rourke
, “
Thermodynamic temperature of the triple point of xenon measured by refractive index gas thermometry
,”
Metrologia
57
,
024001
(
2020
).
8.
B.
Gao
,
H.
Zhang
,
D.
Han
,
C.
Pan
,
H.
Chen
,
Y.
Song
,
W.
Liu
,
J.
Hu
,
X.
Kong
,
F.
Sparasci
,
M.
Plimmer
,
E.
Luo
, and
L.
Pitre
, “
Measurement of thermodynamic temperature between 5 K and 24.5 K with single-pressure refractive-index gas thermometry
,”
Metrologia
57
,
065006
(
2020
).
9.
D.
Madonna Ripa
,
D.
Imbraguglio
,
C.
Gaiser
,
P. P. M.
Steur
,
D.
Giraudi
,
M.
Fogliati
,
M.
Bertinetti
,
G.
Lopardo
,
R.
Dematteis
, and
R. M.
Gavioso
, “
Refractive index gas thermometry between 13.8 K and 161.4 K
,”
Metrologia
58
,
025008
(
2021
).
10.
J.
Ricker
,
K. O.
Douglass
,
S.
Syssoev
,
J.
Stone
,
S.
Avdiaj
, and
J. H.
Hendricks
, “
Transient heating in fixed length optical cavities for use as temperature and pressure standards
,”
Metrologia
58
,
035003
(
2021
).
11.
J. W.
Schmidt
,
R. M.
Gavioso
,
E. F.
May
, and
M. R.
Moldover
, “
Polarizability of helium and gas metrology
,”
Phys. Rev. Lett.
98
,
254504
(
2007
).
12.
P. F.
Egan
,
J. A.
Stone
,
J. H.
Hendricks
,
J. E.
Ricker
,
G. E.
Scace
, and
G. F.
Strouse
, “
Performance of a dual Fabry–Perot cavity refractometer
,”
Opt. Lett.
40
,
3945
(
2015
).
13.
P. F.
Egan
,
J. A.
Stone
,
J. E.
Ricker
, and
J. H.
Hendricks
, “
Comparison measurements of low-pressure between a laser refractometer and ultrasonic manometer
,”
Rev. Sci. Instrum.
87
,
053113
(
2016
).
14.
K.
Jousten
,
J.
Hendricks
,
D.
Barker
,
K.
Douglas
,
S.
Eckel
,
P.
Egan
,
J.
Fedchak
,
J.
Flügge
,
C.
Gaiser
,
D.
Olson
,
J.
Ricker
,
T.
Rubin
,
W.
Sabuga
,
J.
Scherschligt
,
R.
Schödel
,
U.
Sterr
,
J.
Stone
, and
G.
Strouse
, “
Perspectives for a new realization of the pascal by optical methods
,”
Metrologia
54
,
S146
(
2017
).
15.
J.
Scherschligt
,
J. A.
Fedchak
,
Z.
Ahmed
,
D. S.
Barker
,
K.
Douglass
,
S.
Eckel
,
E.
Hanson
,
J.
Hendricks
,
N.
Klimov
,
T.
Purdy
,
J.
Ricker
,
R.
Singh
, and
J.
Stone
, “
Review article: Quantum-based vacuum metrology at the National Institute of Standards and Technology
,”
J. Vac. Sci. Technol. A
36
,
040801
(
2018
).
16.
P.
Gambette
,
R. M.
Gavioso
,
D.
Madonna Ripa
,
M. D.
Plimmer
, and
L.
Pitre
, “
Towards a quantum standard for absolute pressure measurements in the range 200 Pa to 20 kPa based on a superconducting microwave cavity
,” in
2018 Conference on Precision Electromagnetic Measurements (CPEM 2018)
(
IEEE
,
Paris
,
2018
), Article No.
8500912
.
17.
D.
Mari
,
M.
Pisani
, and
M.
Zucco
, “
Towards the realization of an optical pressure standard
,”
Measurement
132
,
402
(
2019
).
18.
Y.
Takei
,
K.
Arai
,
H.
Yoshida
,
Y.
Bitou
,
S.
Telada
, and
T.
Kobata
, “
Development of an optical pressure measurement system using an external cavity diode laser with a wide tunable frequency range
,”
Measurement
151
,
107090
(
2020
).
19.
C.
Pan
,
H.
Chen
,
D.
Han
,
H.
Zhang
,
M.
Plimmer
,
D.
Imbraguglio
,
E.
Luo
,
B.
Gao
, and
L.
Pitre
, “
Numerical and experimental study of the hydrostatic pressure correction in gas thermometry: A case in the SPRIGT
,”
Int. J. Thermophys.
41
,
108
(
2020
).
20.
Y.-R.
Xu
,
Y.-Y.
Liu
,
J.
Wang
,
Y.
Sun
,
Z.-H.
Xi
,
D.-T.
Li
, and
S.-M.
Hu
, “
Vacuum metrology based on refractive index of gas
,”
Acta Phys. Sin.
69
,
150601
(
2020
) (in Chinese).
21.
E. F.
May
,
L.
Pitre
,
J. B.
Mehl
,
M. R.
Moldover
, and
J. W.
Schmidt
, “
Quasi-spherical cavity resonators for metrology based on the relative dielectric permittivity of gases
,”
Rev. Sci. Instrum.
75
,
3307
(
2004
).
22.
P. F.
Egan
,
J. A.
Stone
,
J. K.
Scherschligt
, and
A. H.
Harvey
, “
Measured relationship between thermodynamic pressure and refractivity for six candidate gases in laser barometry
,”
J. Vac. Sci. Technol. A
37
,
031603
(
2019
).
23.
R.
Underwood
,
D.
Flack
,
P.
Morantz
,
G.
Sutton
,
P.
Shore
, and
M.
de Podesta
, “
Dimensional characterization of a quasispherical resonator by microwave and coordinate measurement techniques
,”
Metrologia
48
,
1
(
2011
).
24.
X. J.
Feng
,
K. A.
Gillis
,
M. R.
Moldover
, and
J. B.
Mehl
, “
Microwave-cavity measurements for gas thermometry up to the copper point
,”
Metrologia
50
,
219
(
2013
).
25.
P. M. C.
Rourke
and
K. D.
Hill
, “
Progress toward development of low-temperature microwave refractive index gas thermometry at NRC
,”
Int. J. Thermophys.
36
,
205
(
2015
).
26.
M. R.
Moldover
,
J. W.
Schmidt
,
K. A.
Gillis
,
J. B.
Mehl
, and
J. D.
Wright
, “
Microwave determination of the volume of a pressure vessel
,”
Meas. Sci. Technol.
26
,
015304
(
2015
).
27.
K.
Zhang
,
X. J.
Feng
,
J. T.
Zhang
,
H.
Lin
,
Y. N.
Duan
, and
Y. Y.
Duan
, “
Microwave measurements of the length and thermal expansion of a cylindrical resonator for primary acoustic gas thermometry
,”
Meas. Sci. Technol.
28
,
015006
(
2017
).
28.
G.
Bartl
,
C.
Elster
,
J.
Martin
,
R.
Schödel
,
M.
Voigt
, and
A.
Walkov
, “
Thermal expansion and compressibility of single-crystal silicon between 285 K and 320 K
,”
Meas. Sci. Technol.
31
,
065013
(
2020
).
29.
L. R.
Pendrill
, “
Refractometry and gas density
,”
Metrologia
41
,
S40
(
2004
).
30.
R.
Cuccaro
,
R. M.
Gavioso
,
G.
Benedetto
,
D.
Madonna Ripa
,
V.
Fernicola
, and
C.
Guianvarc’h
, “
Microwave determination of water mole fraction in humid gas mixtures
,”
Int. J. Thermophys.
33
,
1352
(
2012
).
31.
R. J.
Underwood
,
R.
Cuccaro
,
S.
Bell
,
R. M.
Gavioso
,
D.
Madonna Ripa
,
M.
Stevens
, and
M.
de Podesta
, “
A microwave resonance dew-point hygrometer
,”
Meas. Sci. Technol.
23
,
085905
(
2012
).
32.
R. M.
Gavioso
,
D.
Madonna Ripa
,
R.
Benyon
,
J. G.
Gallegos
,
F.
Perez-Sanz
,
S.
Corbellini
,
S.
Avila
, and
A. M.
Benito
, “
Measuring humidity in methane and natural gas with a microwave technique
,”
Int. J. Thermophys.
35
,
748
(
2014
).
33.
P. F.
Egan
,
J. A.
Stone
,
J. E.
Ricker
,
J. H.
Hendricks
, and
G. F.
Strouse
, “
Cell-based refractometer for pascal realization
,”
Opt. Lett.
42
,
2944
(
2017
).
34.
C.
Ramella
,
M.
Pirola
, and
S.
Corbellini
, “
Accurate characterization of high-Q microwave resonances for metrology applications
,”
IEEE J. Microwaves
1
,
610
(
2021
).
35.
I.
Silander
,
T.
Hausmaninger
,
M.
Zelan
, and
O.
Axner
, “
Gas modulation refractometry for high-precision assessment of pressure under non-temperature-stabilized conditions
,”
J. Vac. Sci. Technol. A
36
,
03E105
(
2018
).
36.
Y.
Yang
and
T.
Rubin
, “
Simulation of pressure induced length change of an optical cavity used for optical pressure standard
,”
J. Phys.: Conf. Ser.
1065
,
162003
(
2018
).
37.
I.
Silander
,
T.
Hausmaninger
,
C.
Forssén
,
M.
Zelan
, and
O.
Axner
, “
Gas equilibration gas modulation refractometry for assessment of pressure with sub-ppm precision
,”
J. Vac. Sci. Technol. B
37
,
042901
(
2019
).
38.
I.
Silander
,
C.
Forssén
,
J.
Zakrisson
,
M.
Zelan
, and
O.
Axner
, “
Invar-based refractometer for pressure assessments
,”
Opt. Lett.
45
,
2652
(
2020
).
39.
J.
Zakrisson
,
I.
Silander
,
C.
Forssén
,
M.
Zelan
, and
O.
Axner
, “
Procedure for robust assessment of cavity deformation in Fabry–Pérot based refractometers
,”
J. Vac. Sci. Technol. B
38
,
054202
(
2020
).
40.
G.
Bartl
,
S.
Glaw
,
F.
Schmaljohann
, and
R.
Schödel
, “
Correction for stress-induced optical path length changes in a refractometer cell at variable external pressure
,”
Metrologia
56
,
015001
(
2019
).
41.
G.
Bartl
,
S.
Glaw
,
F.
Schmaljohann
, and
R.
Schödel
, “
Corrigendum: Correction for stress-induced optical path length changes in a refractometer cell at variable external pressure (2019 Metrologia 56 015001)
,”
Metrologia
56
,
049501
(
2019
).
42.
Y.
Takei
,
S.
Telada
,
H.
Yoshida
,
K.
Arai
,
Y.
Bitou
, and
T.
Kobata
, “
In-situ measurement of mirror deformation using dual Fabry–Pérot cavities for optical pressure standard
,”
Measurement
173
,
108496
(
2021
).
43.
D.
Fan
,
Z.-H.
Xi
,
W.-J.
Jia
,
Y.-J.
Cheng
, and
D.-T.
Li
, “
Refractive index measurement of nonpolar rarefied gas in quantum vacuum metrology standard
,”
Acta Phys. Sin.
70
,
040602
(
2021
) (in Chinese).
44.
C.
Gaiser
,
T.
Zandt
, and
B.
Fellmuth
, “
Dielectric-constant gas thermometry
,”
Metrologia
52
,
S217
(
2015
).
45.
M. R.
Moldover
,
R. M.
Gavioso
,
J. B.
Mehl
,
L.
Pitre
,
M.
de Podesta
, and
J. T.
Zhang
, “
Acoustic gas thermometry
,”
Metrologia
51
,
R1
(
2014
).
46.
M.
Puchalski
,
K.
Piszczatowski
,
J.
Komasa
,
B.
Jeziorski
, and
K.
Szalewicz
, “
Theoretical determination of the polarizability dispersion and the refractive index of helium
,”
Phys. Rev. A
93
,
032515
(
2016
).
47.
K.
Pachucki
and
M.
Puchalski
, “
Refractive index and generalized polarizability
,”
Phys. Rev. A
99
,
041803(R)
(
2019
).
48.
B.
Song
and
Q.-Y.
Luo
, “
Accurate second dielectric virial coefficient of helium, neon, and argon from ab initio potentials and polarizabilities
,”
Metrologia
57
,
025007
(
2020
).
49.
G.
Garberoglio
and
A. H.
Harvey
, “
Path-integral calculation of the second dielectric and refractivity virial coefficients of helium, neon, and argon
,”
J. Res. NIST
125
,
125022
(
2020
).
50.
M.
Lesiuk
,
M.
Przybytek
, and
B.
Jeziorski
, “
Theoretical determination of polarizability and magnetic susceptibility of neon
,”
Phys. Rev. A
102
,
052816
(
2020
).
51.
C.
Gaiser
and
B.
Fellmuth
, “
Method for extrapolating the compressibility data of solids from room to lower temperatures
,”
Phys. Status Solidi B
253
,
1549
(
2016
).
52.
A. J.
Schultz
and
D. A.
Kofke
, “
Virial coefficients of helium-4 from ab initio-based molecular models
,”
J. Chem. Eng. Data
64
,
3742
(
2019
).
53.
M.
Puchalski
,
K.
Szalewicz
,
M.
Lesiuk
, and
B.
Jeziorski
, “
QED calculation of the dipole polarizability of helium atom
,”
Phys. Rev. A
101
,
022505
(
2020
).
54.
B.
Song
,
P.
Xu
, and
M.
He
, “
Ultra-accurate thermophysical properties of helium-4 and helium-3 at low density. I. Second pressure and acoustic virial coefficients
,”
Mol. Phys.
119
,
e1802525
(
2020
).
55.
P.
Czachorowski
,
M.
Przybytek
,
M.
Lesiuk
,
M.
Puchalski
, and
B.
Jeziorski
, “
Second virial coefficients for 4He and 3He from an accurate relativistic interaction potential
,”
Phys. Rev. A
102
,
042810
(
2020
).
56.
G.
Garberoglio
and
A. H.
Harvey
, “
Path-integral calculation of the fourth virial coefficient of helium isotopes
,”
J. Chem. Phys.
154
,
104107
(
2021
).
57.
R.
Hellmann
,
C.
Gaiser
,
B.
Fellmuth
,
T.
Vasyltsova
, and
E.
Bich
, “
Thermophysical properties of low-density neon gas from highly accurate first-principles calculations and dielectric-constant gas thermometry measurements
,”
J. Chem. Phys.
154
,
164304
(
2021
).
58.
N. J.
Simon
,
E. S.
Drexler
, and
R. P.
Reed
,
Properties of Copper and Copper Alloys at Cryogenic Temperatures
, NIST Monograph 177 (
U.S. Government Printing Office
,
Washington
,
1992
).
59.
E.
Grüneisen
, “
Theorie des festen zustandes einatomiger elemente
,”
Ann. Phys.
344
,
257
(
1912
).
60.
W. C.
Overton
and
J.
Gaffney
, “
Temperature variation of the elastic constants of cubic elements. I. Copper
,”
Phys. Rev.
98
,
969
(
1955
).
61.
H. M.
Ledbetter
, “
Elastic constants of polycrystalline copper at low temperatures
,”
Phys. Status Solidi A
66
,
477
(
1981
).
62.
NIST
, Material properties: OFHC copper (UNS C10100/C10200), NIST cryogenic material properties database, https://trc.nist.gov/cryogenics/materials/materialproperties.htm,
2010
.
63.
N. F.
Borrelli
and
R. A.
Miller
, “
Determination of the individual strain-optic coefficients of glass by an ultrasonic technique
,”
Appl. Opt.
7
,
745
(
1968
).
64.
J.
Zakrisson
,
I.
Silander
,
C.
Forssén
,
Z.
Silvestri
,
D.
Mari
,
S.
Pasqualin
,
A.
Kussicke
,
P.
Asbahr
,
T.
Rubin
, and
O.
Axner
, “
Simulation of pressure-induced cavity deformation—The 18SIB04 QuantumPascal EMPIR project
,”
Acta IMEKO
9
,
281
(
2020
).
65.
G. K.
White
, “
Reference materials for thermal expansion: Certified or not?
,”
Thermochim. Acta
218
,
83
(
1993
).
66.
T. A.
Hahn
and
R. K.
Kirby
, “
Thermal expansion of fused silica from 80 to 1000 K—standard reference material 739
,”
AIP Conf. Proc.
3
,
13
(
1972
).
67.
W. D.
Drotning
, “
A laser interferometric dilatometer for low-expansion materials
,”
Int. J. Thermophys.
9
,
849
(
1988
).
68.
M.
Okaji
,
N.
Yamada
,
K.
Nara
, and
H.
Kato
, “
Laser interferometric dilatometer at low temperatures: Application to fused silica SRM 739
,”
Cryogenics
35
,
887
(
1995
).
69.
G. H.
Ogin
, “
Measurement of thermo-optic properties of thin film dielectric coatings
,” Ph.D. thesis,
California Institute of Technology
,
Pasadena, CA
,
2013
, .
70.
S.
Avdiaj
,
Y.
Yang
,
K.
Jousten
, and
T.
Rubin
, “
Note: Diffusion constant and solubility of helium in ULE glass at 23 °C
,”
J. Chem. Phys.
148
,
116101
(
2018
).
71.
J. W.
Schmidt
,
K.
Jain
,
A. P.
Miiller
,
W. J.
Bowers
, and
D. A.
Olson
, “
Primary pressure standards based on dimensionally characterized piston/cylinder assemblies
,”
Metrologia
43
,
53
(
2006
).
72.
T.
Zandt
,
W.
Sabuga
,
C.
Gaiser
, and
B.
Fellmuth
, “
Measurement of pressures up to 7 MPa applying pressure balances for dielectric-constant gas thermometry
,”
Metrologia
52
,
S305
(
2015
).
73.
C.
Gaiser
,
B.
Fellmuth
,
N.
Haft
,
A.
Kuhn
,
B.
Thiele-Krivoi
,
T.
Zandt
,
J.
Fischer
,
O.
Jusko
, and
W.
Sabuga
, “
Final determination of the Boltzmann constant by dielectric-constant gas thermometry
,”
Metrologia
54
,
280
(
2017
).
74.
G. F.
Molinar
,
B.
Rebaglia
,
A.
Sacconi
,
J. C.
Legras
,
G. P.
Vailleau
,
J. W.
Schmidt
,
J. R.
Stoup
,
D. R.
Flack
,
W.
Sabuga
, and
O.
Jusko
, “
CCM key comparison in the pressure range 0.05 MPa to 1 MPa (gas medium, gauge mode). Phase A1: Dimensional measurements and calculation of effective area
,”
Metrologia
36
,
657
(
1999
).
75.
E.
Bánréti
, “
Final report on EUROMET key comparison EUROMET.L-K4: Calibration of diameter standards, Group 2
,”
Metrologia
47
,
04001
(
2010
).
76.
G. B.
Picotto
, “
Final report on EUROMET.L-K4: Calibration of diameter standards, Group 1
,”
Metrologia
47
,
04003
(
2010
).
77.
T.
Coveney
, “
A review of state-of-the-art 1D length scale calibration instruments
,”
Meas. Sci. Technol.
31
,
042002
(
2020
).
78.
J.
Stoup
and
T.
Doiron
, “
A novel high accuracy micrometer for the measurement of diameter
,”
Metrologia
58
,
025002
(
2021
).
79.
C.
Hesse
,
O.
Jusko
,
D.
Bastam
, and
H.
Reimann
, “
First results of a pseudo-Abbe comparator for precision length and diameter measurements
,”
Meas. Sci. Technol.
32
,
094013
(
2021
).
80.
J.
Fischer
,
M.
de Podesta
,
K. D.
Hill
,
M.
Moldover
,
L.
Pitre
,
R.
Rusby
,
P.
Steur
,
O.
Tamura
,
R.
White
, and
L.
Wolber
, “
Present estimates of the differences between thermodynamic temperatures and the ITS-90
,”
Int. J. Thermophys.
32
,
12
(
2011
).
81.
A. H.
Harvey
and
E. W.
Lemmon
, “
Method for estimating the dielectric constant of natural gas mixtures
,”
Int. J. Thermophys.
26
,
31
(
2005
).
82.
U.
Hohm
, “
Experimental static dipole–dipole polarizabilities of molecules
,”
J. Mol. Struct.
1054-1055
,
282
(
2013
).
83.
R.
Schödel
,
A.
Walkov
, and
A.
Abou-Zeid
, “
High-accuracy determination of water vapor refractivity by length interferometry
,”
Opt. Lett.
31
,
1979
(
2006
).
84.
C.
Gaiser
and
B.
Fellmuth
, “
Highly-accurate density-virial-coefficient values for helium, neon, and argon at 0.01 °C determined by dielectric-constant gas thermometry
,”
J. Chem. Phys.
150
,
134303
(
2019
).
85.
C.
Gaiser
and
B.
Fellmuth
, “
Highly-accurate second-virial-coefficient values for helium from 3.7 K to 273 K determined by dielectric-constant gas thermometry
,”
Metrologia
58
,
015013
(
2021
).
86.
C.
Gaiser
and
B.
Fellmuth
, “
Polarizability of helium, neon, and argon: New perspectives for gas metrology
,”
Phys. Rev. Lett.
120
,
123203
(
2018
).
87.
L. W.
Bruch
and
F.
Weinhold
, “
Diamagnetism of helium
,”
J. Chem. Phys.
113
,
8667
(
2000
).
88.
L. W.
Bruch
and
F.
Weinhold
, “
Nuclear motion and Breit–Pauli corrections to the diamagnetism of atomic helium
,”
J. Chem. Phys.
117
,
3243
(
2002
).
89.
L. W.
Bruch
and
F.
Weinhold
, “
Erratum: “Nuclear motion and Breit–Pauli corrections to the diamagnetism of atomic helium” [J. Chem. Phys. 117, 3243 (2002)]
,”
J. Chem. Phys.
119
,
638
(
2003
).
90.
G. G.
Havens
, “
The magnetic susceptibilities of some common gases
,”
Phys. Rev.
43
,
992
(
1933
).
91.
K. E.
Mann
, “
Suszeptibilitätsmessungen an sauerstoff und edelgasen
,”
Z. Phys.
98
,
548
(
1936
).
92.
L.
Abonnenc
, “
Diamagnétisme des gaz rares de l’air, argon, krypton, xénon
,”
C. R. Acad. Sci.
208
,
986
(
1939
).
93.
C.
Barter
,
R. G.
Meisenheimer
, and
D. P.
Stevenson
, “
Diamagnetic susceptibilities of simple hydrocarbons and volatile hydrides
,”
J. Phys. Chem.
64
,
1312
(
1960
).
94.
H. J.
Achtermann
,
G.
Magnus
, and
T. K.
Bose
, “
Refractivity virial coefficients of gaseous CH4, C2H4, C2H6, CO2, SF6, H2, N2, He, and Ar
,”
J. Chem. Phys.
94
,
5669
(
1991
).
95.
H. J.
Achtermann
,
J. G.
Hong
,
G.
Magnus
,
R. A.
Aziz
, and
M. J.
Slaman
, “
Experimental determination of the refractivity virial coefficients of atomic gases
,”
J. Chem. Phys.
98
,
2308
(
1993
).
96.
M.
Lallemand
and
D.
Vidal
, “
Variation of the polarizability of noble gases with density
,”
J. Chem. Phys.
66
,
4776
(
1977
).
97.
C.
Gaiser
(private communication,
2021
).
98.
G.
Garberoglio
,
M. R.
Moldover
, and
A. H.
Harvey
, “
Improved first-principles calculation of the third virial coefficient of helium
,”
J. Res. NIST
116
,
729
(
2011
).
99.
G.
Garberoglio
,
M. R.
Moldover
, and
A. H.
Harvey
, “
Erratum: Improved first-principles calculation of the third virial coefficient of helium
,”
J. Res. NIST
125
,
125019
(
2020
).
100.
J.
Wiebke
,
E.
Pahl
, and
P.
Schwerdtfeger
, “
Up to fourth virial coefficients from simple and efficient internal-coordinate sampling: Application to neon
,”
J. Chem. Phys.
137
,
014508
(
2012
).
101.
W.
Cencek
,
G.
Garberoglio
,
A. H.
Harvey
,
M. O.
McLinden
, and
K.
Szalewicz
, “
Three-body nonadditive potential for argon with estimated uncertainties and third virial coefficient
,”
J. Phys. Chem. A
117
,
7542
(
2013
).
102.
B.
Jäger
,
R.
Hellmann
,
E.
Bich
, and
E.
Vogel
, “
Ab initio virial equation of state for argon using a new nonadditive three-body potential
,”
J. Chem. Phys.
135
,
084308
(
2011
).
103.
K.
Pachucki
, “
Theory of forbidden transitions in light atoms
,”
Phys. Rev. A
67
,
012504
(
2003
).
104.
R.
Moszynski
,
T. G. A.
Heijmen
, and
A.
van der Avoird
, “
Second dielectric virial coefficient of helium gas: Quantum-statistical calculations from an ab initio interaction-induced polarizability
,”
Chem. Phys. Lett.
247
,
440
(
1995
).
105.
A.
Rizzo
,
C.
Hättig
,
B.
Fernández
, and
H.
Koch
, “
The effect of intermolecular interactions on the electric properties of helium and argon. III. Quantum statistical calculations of the dielectric second virial coefficients
,”
J. Chem. Phys.
117
,
2609
(
2002
).
106.
U.
Hohm
, “
Frequency-dependence of second refractivity virial coefficients of small molecules between 325 nm and 633 nm
,”
Mol. Phys.
81
,
157
(
1994
).
107.
C.
Gaiser
,
B.
Fellmuth
, and
W.
Sabuga
, “
Primary gas-pressure standard from electrical measurements and thermophysical ab initio calculations
,”
Nat. Phys.
16
,
177
(
2020
).
108.
S.
Kirouac
and
T. K.
Bose
, “
Polarizability and dielectric properties of helium
,”
J. Chem. Phys.
64
,
1580
(
1976
).
109.
J.
Huot
and
T. K.
Bose
, “
Experimental determination of the dielectric virial coefficients of atomic gases as a function of temperature
,”
J. Chem. Phys.
95
,
2683
(
1991
).
110.
M. P.
White
and
D.
Gugan
, “
Direct measurements of the dielectric virial coefficients of 4He between 3 K and 18 K
,”
Metrologia
29
,
37
(
1992
).
111.
D. F.
Heller
and
W. M.
Gelbart
, “
Short range electronic distortion and the density dependent dielectric function of simple gases
,”
Chem. Phys. Lett.
27
,
359
(
1974
).
112.
D.
Vidal
and
M.
Lallemand
, “
Evolution of the Clausius–Mossotti function of noble gases and nitrogen, at moderate and high density, near room temperature
,”
J. Chem. Phys.
64
,
4293
(
1976
).
113.
T. K.
Bose
,
K.
Boudjarane
,
J.
Huot
, and
J. M.
St‐Arnaud
, “
Refractivity virial coefficients of C2H4 and C2H4-Ar mixtures
,”
J. Chem. Phys.
89
,
7435
(
1988
).
114.
M. R.
Moldover
and
T. J.
Buckley
, “
Reference values of the dielectric constant of natural gas components determined with a cross capacitor
,”
Int. J. Thermophys.
22
,
859
(
2001
).
115.
G.
Garberoglio
and
A. H.
Harvey
(private communication,
2021
).
116.
R.
Coulon
,
G.
Montixi
, and
R.
Occelli
, “
Détermination expérimentale des coefficients du viriel de la réfractivité des gaz: Étude de l’argon
,”
Can. J. Phys.
59
,
1555
(
1981
).
117.
G.
Montixi
,
R.
Coulon
, and
R.
Occelli
, “
Coefficients du viriel de la réfractivité de l’azote a 25 °C
,”
Can. J. Phys.
61
,
473
(
1983
).
118.
B.
Jeziorski
(private communication,
2021
).
119.
E.
Bich
,
R.
Hellmann
, and
E.
Vogel
, “
Ab initio potential energy curve for the neon atom pair and thermophysical properties for the dilute neon gas. II. Thermophysical properties for low-density neon
,”
Mol. Phys.
106
,
1107
(
2008
).
120.
J.
Wiebke
,
P.
Schwerdtfeger
,
G. E.
Moyano
, and
E.
Pahl
, “
An atomistic fourth-order virial equation of state for argon from first principles calculations
,”
Chem. Phys. Lett.
514
,
164
(
2011
).
121.
M. O.
McLinden
, “
Densimetry for primary temperature metrology and a method for the in situ determination of densimeter sinker volumes
,”
Meas. Sci. Technol.
17
,
2597
(
2006
).
122.
W.
Cencek
,
M.
Przybytek
,
J.
Komasa
,
J. B.
Mehl
,
B.
Jeziorski
, and
K.
Szalewicz
, “
Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium
,”
J. Chem. Phys.
136
,
224303
(
2012
).
123.
R. M.
Gavioso
and
D.
Madonna Ripa
(private communication,
2021
).
124.
R.
Gilgen
,
R.
Kleinrahm
, and
W.
Wagner
, “
Measurement and correlation of the (pressure, density, temperature) relation of argon I. The homogeneous gas and liquid regions in the temperature range from 90 K to 340 K at pressures up to 12 MPa
,”
J. Chem. Thermodyn.
26
,
383
(
1994
).
125.
Ch.
Tegeler
,
R.
Span
, and
W.
Wagner
, “
A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa
,”
J. Phys. Chem. Ref. Data
28
,
779
(
1999
).
126.
J. D.
Dymond
,
K. N.
Marsh
,
R. C.
Wilhoit
, and
K. C.
Wong
,
Virial Coefficients of Pure Gases and Mixtures
, Landolt-Börnstein Group IV: Physical Chemistry, Vol. 21 (
Springer-Verlag
,
Berlin
,
2002
).
127.
P.
Nowak
,
R.
Kleinrahm
, and
W.
Wagner
, “
Measurement and correlation of the (p, ρ, T) relation of nitrogen I. The homogeneous gas and liquid regions in the temperature range from 66 K to 340 K at pressures up to 12 MPa
,”
J. Chem. Thermodyn.
29
,
1137
(
1997
).
128.
M. O.
McLinden
and
C.
Lösch-Will
, “
Apparatus for wide-ranging, high-accuracy fluid (p, ρ, T) measurements based on a compact two-sinker densimeter
,”
J. Chem. Thermodyn.
39
,
507
(
2007
).
129.
I. D.
Mantilla
,
D. E.
Cristancho
,
S.
Ejaz
,
K. R.
Hall
,
M.
Atilhan
, and
G. A.
Iglesias-Silva
, “
New P−ρ−T data for nitrogen at temperatures from (265 to 400) K at pressures up to 150 MPa
,”
J. Chem. Eng. Data
55
,
4227
(
2010
).
130.
F. B.
Canfield
,
T. W.
Leland
, and
R.
Kobayashi
, “
Volumetric behavior of gas mixtures at low temperatures by the Burnett method: The helium-nitrogen system, 0 °C to −140 °C
,”
Adv. Cryog. Eng.
8
,
146
(
1963
).
131.
A. E.
Hoover
,
F. B.
Canfield
,
R.
Kobayashi
, and
T. W.
Leland
, “
Determination of virial coefficients by the Burnett method
,”
J. Chem. Eng. Data
9
,
568
(
1964
).
132.
K.
Kerl
, “
Determination of mean molecular polarizabilities and second virial coefficients of gases by scanning-wavelength interferometry
,”
Z. Phys. Chem.
129
,
129
(
1982
).
133.
G. L.
Brooks
and
C. J. G.
Raw
, “
The second virial coefficient of boron trifluoride + nitrogen mixtures
,”
Trans. Faraday Soc.
54
,
972
(
1958
).
134.
R.
Subramanian
,
A. J.
Schultz
, and
D. A.
Kofke
, “
Quantum virial coefficients of molecular nitrogen
,”
Mol. Phys.
115
,
869
(
2017
).
135.
M. B.
Ewing
and
J. P. M.
Trusler
, “
Second acoustic virial coefficients of nitrogen between 80 and 373 K
,”
Physica A
184
,
415
(
1992
).
136.
K. R. S.
Shaul
,
A. J.
Schultz
, and
D. A.
Kofke
, “
Path-integral Mayer-sampling calculations of the quantum Boltzmann contribution to virial coefficients of helium-4
,”
J. Chem. Phys.
137
,
184101
(
2012
).
137.
T. T. H.
Verschoyle
, “
Isotherms of hydrogen, of nitrogen, and of hydrogen-nitrogen mixtures, at 0° and 20 °C, up to a pressure of 200 atmospheres
,”
Proc. R. Soc. A
111
,
552
(
1926
).
138.
J.
Otto
,
A.
Michels
, and
H.
Wouters
, “
The isotherms of nitrogen between 0° and 150° at pressures up to 400 atmospheres
,”
Phys. Z.
35
,
97
(
1934
).
You do not currently have access to this content.