A brief overview is provided on articles published in the Journal of Physical and Chemical Reference Data containing experimental thermodynamic data as well as group contribution methods used to predict thermodynamic quantities of organic compounds. Published papers have contained large compilations of experimental and calculated condensed-phase and gas-phase standard molar enthalpies of formation, isobaric molar heat capacities, molar enthalpies of fusion, molar enthalpies of sublimation, and molar enthalpies of vaporization.
References
1.
J.
Chao
, R. C.
Wilhoit
, and B. J.
Zwolinski
, “Ideal gas thermodynamic properties of ethane and propane
,” J. Phys. Chem. Ref. Data
2
, 427
(1973
).2.
J.
Chao
and B. J.
Zwolinski
, “Ideal gas thermodynamic properties of ethylene and propylene
,” J. Phys. Chem. Ref. Data
4
, 251
(1975
).3.
S. S.
Chen
, R. C.
Wilhoit
, and B. J.
Zwolinski
, “Ideal gas thermodynamic properties and isomerization of n‐butane and isobutane
,” J. Phys. Chem. Ref. Data
4
, 859
(1975
).4.
A. S.
Rodgers
, J.
Chao
, R. C.
Wilhoit
, and B. J.
Zwolinski
, “Ideal gas thermodynamic properties of eight chloro- and fluoromethanes
,” J. Phys. Chem. Ref. Data
3
, 117
(1974
).5.
J.
Chao
, A. S.
Rodgers
, R. C.
Wilhoit
, and B. J.
Zwolinski
, “Ideal gas thermodynamic properties of six chloroethanes
,” J. Phys. Chem. Ref. Data
3
, 141
(1974
).6.
S. S.
Chen
, A. S.
Rodgers
, J.
Choo
, R. C.
Wilhoit
, and B. J.
Zwolinski
, “Ideal gas thermodynamic properties of six fluoroethanes
,” J. Phys. Chem. Ref. Data
4
, 441
(1975
).7.
S. A.
Kudchadker
and A. P.
Kudchadker
, “Ideal gas thermodynamic properties of the eight bromo‐ and iodomethanes
,” J. Phys. Chem. Ref. Data
4
, 457
(1975
).8.
S. S.
Chen
, R. C.
Wilhoit
, and B. J.
Zwolinski
, “Ideal gas thermodynamic properties of six chlorofluoromethanes
,” J. Phys. Chem. Ref. Data
5
, 571
(1976
).9.
S. A.
Kudchadker
and A. P.
Kudchadker
, “Ideal gas thermodynamic properties of CH4−(a+b+c+d)FaClbBrcId halomethanes
,” J. Phys. Chem. Ref. Data
7
, 1285
(1978
).10.
S. A.
Kudchadker
and A. P.
Kudchadker
, “Ideal gas thermodynamic properties of selected bromoethanes and iodoethane
,” J. Phys. Chem. Ref. Data
8
, 519
(1979
).11.
J.
Chao
and B. J.
Zwolinski
, “Ideal gas thermodynamic properties of methanoic and ethanoic acids
,” J. Phys. Chem. Ref. Data
7
, 363
(1978
).12.
J.
Chao
and B. J.
Zwolinski
, “Ideal gas thermodynamic properties of propanone and 2‐butanone
,” J. Phys. Chem. Ref. Data
5
, 319
(1976
).13.
S. A.
Kudchadker
, A. P.
Kudchadker
, R. C.
Wilhoit
, and B. J.
Zwolinski
, “Ideal gas thermodynamic properties of phenol and cresols
,” J. Phys. Chem. Ref. Data
7
, 417
(1978
).14.
E. S.
Domalski
, “Selected values of heats of combustion and heats of formation of organic compounds containing the elements C, H, N, O, P, and S
,” J. Phys. Chem. Ref. Data
1
, 221
(1972
).15.
R. A.
Alberty
and C. A.
Gehrig
, “Standard chemical thermodynamic properties of alkane isomer groups
,” J. Phys. Chem. Ref. Data
13
, 1173
(1984
).16.
R. A.
Alberty
, “Standard chemical thermodynamic properties of alkylbenzene isomer groups
,” J. Phys. Chem. Ref. Data
14
, 177
(1985
).17.
R. A.
Alberty
and C. A.
Gehrig
, “Standard chemical thermodynamic properties of alkene isomer groups
,” J. Phys. Chem. Ref. Data
14
, 803
(1985
).18.
R. A.
Alberty
and T. M.
Bloomstein
, “Standard chemical thermodynamic properties of alkylnaphthalene isomer groups
,” J. Phys. Chem. Ref. Data
14
, 821
(1985
).19.
R. A.
Alberty
and Y. S.
Ha
, “Standard chemical thermodynamic properties of alkylcyclopentane isomer groups, alkylcyclohexane isomer groups, and combined isomer groups
,” J. Phys. Chem. Ref. Data
14
, 1107
(1985
).20.
R. A.
Alberty
and E.
Burmenko
, “Standard chemical thermodynamic properties of alkyne isomer groups
,” J. Phys. Chem. Ref. Data
15
, 1339
(1986
).21.
R. A.
Alberty
, E.
Burmenko
, T. H.
Kang
, and M. B.
Chung
, “Standard chemical thermodynamic properties of alkanethiol isomer groups
,” J. Phys. Chem. Ref. Data
16
, 193
(1987
).22.
R. A.
Alberty
, M. B.
Chung
, and T. M.
Flood
, “Standard chemical thermodynamic properties of alkanol isomer groups
,” J. Phys. Chem. Ref. Data
16
, 391
(1987
).23.
R. A.
Alberty
and A. K.
Reif
, “Standard chemical thermodynamic properties of polycyclic aromatic hydrocarbons and their isomer groups I. Benzene series
,” J. Phys. Chem. Ref. Data
17
, 241
(1988
).24.
J.
Chao
, N. A. M.
Gadalla
, B. E.
Gammon
, K. N.
Marsh
, A. S.
Rodgers
, G. R.
Somayajulu
, and R. C.
Wilhoit
, “Thermodynamic and thermophysical properties of organic nitrogen compounds. Part I. Methanamine, ethanamine, 1‐ and 2‐propanamine, benzenamine, 2‐, 3‐, and 4‐methylbenzenamine
,” J. Phys. Chem. Ref. Data
19
, 1547
(1990
).25.
O. V.
Dorofeeva
, L. V.
Gurvich
, and V. S.
Jorish
, “Thermodynamic properties of twenty‐one monocyclic hydrocarbons
,” J. Phys. Chem. Ref. Data
15
, 437
(1986
).26.
E. S.
Domalski
and E. D.
Hearing
, “Estimation of the thermodynamic properties of hydrocarbons at 298.15 K
,” J. Phys. Chem. Ref. Data
17
, 1637
(1988
).27.
R. A.
Alberty
, M. B.
Chung
and A. K.
Reif
, “Standard chemical thermodynamic properties of polycyclic aromatic hydrocarbons and their isomer groups. II. Pyrene series, naphthopyrene series, and coronene series
,” J. Phys. Chem. Ref. Data
18
, 77
(1989
).28.
R. A.
Alberty
and M. B.
Chung
, “Standard chemical thermodynamic properties of isomer groups of monochloroalkanes
,” J. Phys. Chem. Ref. Data
19
, 321
(1990
).29.
R. A.
Alberty
, M. B.
Chung
, and A. K.
Reif
, “Standard chemical thermodynamic properties of polycyclic aromatic hydrocarbons and their isomer groups. III. Naphthocoronene series, ovalene series, and first members of some higher series
,” J. Phys. Chem. Ref. Data
19
, 349
(1990
).30.
W. V.
Steele
and R. D.
Chirico
, “Thermodynamic properties of alkenes (mono‐olefins larger than C4)
,” J. Phys. Chem. Ref. Data
22
, 377
(1993
).31.
E. S.
Domalski
and E. D.
Hearing
, “Estimation of the thermodynamic properties of C–H–N–O–S–Halogen compounds at 298.15 K
,” J. Phys. Chem. Ref. Data
22
, 805
(1993
).32.
O. V.
Dorofeeva
and L. V.
Gurvich
, “Ideal gas thermodynamic properties of sulphur heterocyclic compounds
,” J. Phys. Chem. Ref. Data
24
, 1351
(1995
).33.
N.
Cohen
, “Revised group additivity values for enthalpies of formation (at 298 K) of carbon–hydrogen and carbon–hydrogen–oxygen compounds
,” J. Phys. Chem. Ref. Data
25
, 1411
(1996
).34.
A.
Burcat
, L.
Khachatryan
, and B. L.
Dellinger
, “Thermodynamics of chlorinated phenols, polychlorinated dibenzo- p -dioxins, polychlorinated dibenzofurans, derived radicals, and intermediate species
,” J. Phys. Chem. Ref. Data
32
, 443
(2003
).35.
M. V.
Roux
, M.
Temprado
, J. S.
Chickos
, and Y.
Nagano
, “Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons
,” J. Phys. Chem. Ref. Data
37
, 1855
(2008
).36.
S. S.
Chen
, R. C.
Wilhoit
, and B. J.
Zwolinski
, “Thermodynamic properties of normal and deuterated methanols
,” J. Phys. Chem. Ref. Data
6
, 105
(1977
).37.
S. S.
Chen
, S. A.
Kudchadker
, and R. C.
Wilhoit
, “Thermodynamic properties of normal and deuterated naphthalenes
,” J. Phys. Chem. Ref. Data
8
, 527
(1979
).38.
R. C.
Wilhoit
, J.
Chao
, and K. R.
Hall
, “Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 1. Properties of condensed phases
,” J. Phys. Chem. Ref. Data
14
, 1
(1985
).39.
J.
Chao
, K. R.
Hall
, K. N.
Marsh
, and R. C.
Wilhoit
, “Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties
,” J. Phys. Chem. Ref. Data
15
, 1369
(1986
).40.
A.
Das
, M.
Frenkel
, N. A. M.
Gadalla
, S.
Kudchadker
, K. N.
Marsh
, A. S.
Rodgers
, and R. C.
Wilhoit
, “Thermodynamic and thermophysical properties of organic nitrogen compounds. Part II. 1- and 2-butanamine, 2-methyl-1-propanamine, 2-methyl-2-propanamine, pyrrole, 1-, 2-, and 3-methylpyrrole, pyridine, 2-, 3-, and 4-methylpyridine, pyrrolidine, piperidine, Indole, Quinoline, Isoquinoline, Acridine, Carbazole, Phenanthridine, 1‐ and 2‐Naphthalenamine, and 9‐Methylcarbazole
,” J. Phys. Chem. Ref. Data
22
, 659
(1993
).41.
L.
Zhu
and J. W.
Bozzelli
, “Thermochemical properties, ΔfH°(298.15 K), S°(298.15 K), and Cp°(T), of 1,4-dioxin, 2,3-benzodioxin, furan, 2,3-benzofuran, and twelve monochloro and dichloro dibenzo-p-dioxins and dibenzofurans
,” J. Phys. Chem. Ref. Data
32
, 1713
(2003
).42.
H. J.
Curran
, C.
Wu
, N.
Marinov
, W. J.
Pitz
, C. K.
Westbrook
, and A.
Burcat
, “The ideal gas thermodynamics of diesel fuel ingredients. I. Naphthalene derivatives and their radicals
,” J. Phys. Chem. Ref. Data
29
, 463
(2000
).43.
K. M.
Pamidimukkala
, D.
Rogers
, and G. B.
Skinner
, “Ideal gas thermodynamic properties of CH3, CD3, CD4, C2D2, C2D4, C2D6, C2H6, CH3N2CH3, and CD3N2CD3
,” J. Phys. Chem. Ref. Data
11
, 83
(1982
).44.
M.
Karni
, I.
Oref
, and A.
Burcat
, “Ab‐initio calculations and ideal gas thermodynamic functions of cyclopentadiene and cyclopentadiene derivatives
,” J. Phys. Chem. Ref. Data
20
, 665
(1991
).45.
A.
Burcat
, “Thermodynamic properties of ideal gas nitro and nitrate compounds
,” J. Phys. Chem. Ref. Data
28
, 63
(1999
).46.
Y. U.
Paulechka
, “Heat capacity of room-temperature ionic liquids: A critical review
,” J. Phys. Chem. Ref. Data
39
, 033108
(2010
).47.
M.
Zábranský
, V.
Růžička
, Jr., and V.
Majer
, “Heat capacities of organic compounds in the liquid state I. C1 to C18 1‐alkanols
,” J. Phys. Chem. Ref. Data
19
, 719
(1990
).48.
E. S.
Domalski
and E. D.
Hearing
“Heat capacities and entropies of organic compounds in the condensed phase volume II
,” J. Phys. Chem. Ref. Data
19
, 881
(1990
).49.
V.
Růžička
, Jr., M.
Zábranský
, and V.
Majer
, “Heat capacities of organic compounds in liquid state II. C1 to C18 n‐alkanes
,” J. Phys. Chem. Ref. Data
20
, 405
(1991
).50.
M.
Zabransky
and V.
Růžička
, Jr., “Heat capacity of liquid n-heptane the converted to international temperature scale of 1990
,” J. Phys. Chem. Ref. Data
23
, 55
(1994
).51.
V.
Růžička
, Jr. and E. S.
Domalski
, “Estimation of the heat capacities of organic liquids as a function of temperature using group additivity. I. Hydrocarbon compounds
,” J. Phys. Chem. Ref. Data
22
, 597
(1993
).52.
V.
Růžička
, Jr. and E. S.
Domalski
, “Estimation of the heat capacities of organic liquids as a function of temperature using group additivity. II. Compounds of carbon, hydrogen, halogens, nitrogen, oxygen, and sulfur
,” J. Phys. Chem. Ref. Data
22
, 619
(1993
).53.
E. S.
Domalski
and E. D.
Hearing
, “Heat capacities and entropies of organic compounds in the condensed phase. Volume III
,” J. Phys. Chem. Ref. Data
25
, 1
(1996
).54.
M.
Zábranský
, V.
Růžička
, Jr., and E. S.
Domalski
, “Heat capacity of liquids: Critical review and recommended values. Supplement I
,” J. Phys. Chem. Ref. Data
30
, 1199
(2001
).55.
M.
Zábranský
and V.
Růžička
, Jr., “Estimation of the heat capacities of organic liquids as a function of temperature using group additivity: An amendment
,” J. Phys. Chem. Ref. Data
33
, 1071
(2004
).56.
M.
Zábranský
and V.
Růžička
, Jr., “Erratum: ‘Estimation of the heat capacities of organic liquids as a function of temperature using group Additivity. An amendment.’ [J. Phys. Chem. Ref. Data 33, 1071 (2004)]
,” J. Phys. Chem. Ref. Data
34
, 39
(2005
).57.
M.
Zábranský
, Z.
Kolská
, V.
Růžička
, Jr., and E. S.
Domalski
, “Heat capacity of liquids: Critical review and recommended values. Supplement II
,” J. Phys. Chem. Ref. Data
39
, 013103
(2010
).58.
U.
Gaur
and B.
Wunderlich
, “Heat capacity and other thermodynamic properties of linear macromolecules. II. Polyethylene
,” J. Phys. Chem. Ref. Data
10
, 119
(1981
).59.
U.
Gaur
and B.
Wunderlich
, “Heat capacity and other thermodynamic properties of linear macromolecules. III. Polyoxides
,” J. Phys. Chem. Ref. Data
10
, 1001
(1981
).60.
U.
Gaur
and B.
Wunderlich
, “Heat capacity and other thermodynamic properties of linear macromolecules. IV. Polypropylene
,” J. Phys. Chem. Ref. Data
10
, 1051
(1981
).61.
U.
Gaur
and B.
Wunderlich
, “Heat capacity and other thermodynamic properties of linear macromolecules. V. Polystyrene
,” J. Phys. Chem. Ref. Data
11
, 313
(1982
).62.
U.
Gaur
, S.
‐F Lau
, B. B.
Wunderlich
, and B.
Wunderlich
, “Heat capacity and other thermodynamic properties of linear macromolecules VI. Acrylic polymers
,” J. Phys. Chem. Ref. Data
11
, 1065
(1982
).63.
U.
Gaur
, B. B.
Wunderlich
, and B.
Wunderlich
, “Heat capacity and other thermodynamic properties of linear macromolecules. VII. Other carbon backbone polymers
,” J. Phys. Chem. Ref. Data
12
, 29
(1983
).64.
U.
Gaur
, S.‐F.
Lau
, B. B.
Wunderlich
, and B.
Wunderlich
, “Heat capacity and other thermodynamic properties of linear macromolecules. VIII. Polyesters and polyamides
,” J. Phys. Chem. Ref. Data
12
, 65
(1983
).65.
U.
Gaur
, S.-F.
Lau
, and B.
Wunderlich
, “Heat capacity and other thermodynamic properties of linear macromolecules. IX. Final group of aromatic and inorganic polymers
,” J. Phys. Chem. Ref. Data
12
, 91
(1983
).66.
M.
Varma-Nair
and B.
Wunderlich
, “Heat capacity and other thermodynamic properties of linear macromolecules X. Update of the ATHAS 1980 Data Bank
,” J. Phys. Chem. Ref. Data
20
, 349
(1991
).67.
J. S.
Chickos
, W. E.
Acree
, Jr., and J. F.
Liebman
, “Estimating solid–liquid phase change enthalpies and entropies
,” J. Phys. Chem. Ref. Data
28
, 1535
(1999
).68.
J. S.
Chickos
and W. E.
Acree
, Jr., “Enthalpies of sublimation of organic and organometallic compounds. 1910–2001
,” J. Phys. Chem. Ref. Data
31
, 537
(2002
).69.
J. S.
Chickos
and W. E.
Acree
, Jr., “Enthalpies of vaporization of organic and organometallic compounds, 1880–2002
,” J. Phys. Chem. Ref. Data
32
, 519
(2003
).70.
K.
Růžička
and V.
Majer
, “Simultaneous treatment of vapor pressures and related thermal data between the triple and normal boiling temperatures for n‐alkanes C5–C20
,” J. Phys. Chem. Ref. Data
23
, 1
(1994
).71.
W.
Acree
, Jr. and J. S.
Chickos
, “Phase transition enthalpy measurements of organic and organometallic compounds. sublimation, vaporization and fusion enthalpies from 1880 to 2010
,” J. Phys. Chem. Ref. Data
39
, 043101
(2010
).72.
W.
Acree
, Jr. and J. S.
Chickos
, “Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2015. Part 1. C1−C10
,” J. Phys. Chem. Ref. Data
45
, 033101
(2016
).73.
W.
Acree
, Jr. and J. S.
Chickos
, “Phase transition enthalpy measurements of organic and organometallic compounds and ionic liquids. Sublimation, vaporization, and fusion enthalpies from 1880 to 2015. Part 2. C11–C192
,” J. Phys. Chem. Ref. Data
46
, 013104
(2017
).74.
W. E.
Acree
, Jr. and J. S.
Chickos
, “Phase change enthalpies and entropies of liquid crystals
,” J. Phys. Chem. Ref. Data
35
, 1051
(2006
).75.
NIST Chemistry WebBook
, NIST Standard Reference Database Number Vol. 69, edited by P. J.
Linstrom
and W. G.
Mallard
(National Institute of Standards and Technology
, Gaithersburg, MD
, 2018
), p. 20899
, ; accessed May 10, 2021.76.
J. P.
Leal
, “Additive methods for prediction of thermochemical properties. The Laidler method revisited. 1. Hydrocarbons
,” J. Phys. Chem. Ref. Data
35
, 55
(2006
).77.
A.
Salmon
and D.
Dalmazzone
, “Prediction of enthalpy of formation in the solid state (at 298.15 K) using second-order group contributions. Part 1. Carbon–hydrogen and carbon–hydrogen–oxygen compounds
,” J. Phys. Chem. Ref. Data
35
, 1443
(2006
).78.
A.
Salmon
and D.
Dalmazzone
, “Prediction of enthalpy of formation in the solid state (at 298.15K) using second-order group contributions. Part 2: Carbon–hydrogen, carbon–hydrogen–oxygen, and carbon–hydrogen–nitrogen–oxygen compounds
,” J. Phys. Chem. Ref. Data
36
, 19
(2007
).79.
R. C.
Santos
and J. P.
Leal
, “A review on prediction methods for molar enthalpies of vaporization of hydrocarbons: The ELBA method as the best answer
,” J. Phys. Chem. Ref. Data
41
, 043101
(2012
).80.
S. P.
Verevkin
, V. N.
Emel'yanenko
, V.
Diky
, C. D.
Muzny
, R. D.
Chirico
, and M.
Frenkel
, “New group-contribution approach to thermochemical properties of organic compounds: Hydrocarbons and oxygen-containing compounds
,” J. Phys. Chem. Ref. Data
42
, 033102
(2013
).81.
S. P.
Verevkin
, V. N.
Emel'yanenko
, V.
Diky
, C. D.
Muzny
, R. D.
Chirico
, and M.
Frenkel
, “Erratum: New group-contribution approach to thermochemical properties of organic compounds: Hydrocarbons and oxygen-containing compounds [J. Phys. Chem. Ref. Data 42, 033102 (2013)]
,” J. Phys. Chem. Ref. Data
43
, 019902
(2014
).82.
S. M.
Burke
, J. M.
Simmie
, and H. J.
Curran
, “Critical evaluation of thermochemical properties of C1–C4 species: Updated group-contributions to estimate thermochemical properties
,” J. Phys. Chem. Ref. Data
44
, 013101
(2015
).83.
K. J.
Laidler
, “A system of molecular thermochemistry for organic gases and liquids
,” Can. J. Chem.
34
, 626
(1956
).84.
B.
Ruscic
, J. E.
Boggs
, A.
Burcat
, A. G.
Császár
, J.
Demaison
, R.
Janoschek
, J. M. L.
Martin
, M. L.
Morton
, M. J.
Rossi
, J. F.
Stanton
, P. G.
Szalay
, P. R.
Westmoreland
, F.
Zabel
, and T.
Bérces
, “IUPAC critical evaluation of thermochemical properties of selected radicals. Part I
,” J. Phys. Chem. Ref. Data
34
, 573
(2005
).85.
J. M.
Simmie
and J.
Würmel
, “An organized collection of theoretical gas-phase geometric, spectroscopic, and thermochemical data of oxygenated hydrocarbons, CxHyOz (x, y = 1, 2; z = 1–8), of relevance to atmospheric, astrochemical, and combustion sciences
,” J. Phys. Chem. Ref. Data
49
, 023102
(2021
).86.
L. V.
Gurvich
, G. A.
Bergman
, L. N.
Gorokhov
, V. S.
Iorish
, V. Ya.
Leonidov
, and V. S.
Yungman
, “Thermodynamic properties of alkali metal hydroxides. Part I. Lithium and sodium hydroxides
,” J. Phys. Chem. Ref. Data
25
, 1211
(1996
).87.
S. P.
Kirby
, E. M.
Marshall
, and J. B.
Pedley
, “Computer methods applied to the assessment of thermochemical data. Part 1. The establishment of a computerized thermochemical data base illustrated by data for TiCl4(g), TiCl4(l), TiCl3(cr), and TiCl2(cr)
,” J. Phys. Chem. Ref. Data
15
, 943
(1986
).88.
C.-L.
Yu
and S. H.
Bauer
, “Thermochemistry of boranes
,” J. Phys. Chem. Ref. Data
27
, 807
(1998
).89.
J. L.
Lyman
and T.
Noda
, “Thermochemical properties of Si2F6 and SiF4 in gas and condensed phases
,” J. Phys. Chem. Ref. Data
30
, 165
(2001
).90.
Q. F.
Zeng
, K. H.
Su
, L. T.
Zhang
, Y. D.
Xu
, L. F.
Cheng
, and X. T.
Yan
, “Evaluation of the thermodynamic data of CH3SiCl3 based on quantum chemistry calculations
,” J. Phys. Chem. Ref. Data
35
, 1385
(2006
).91.
D. G.
Archer
, “Thermodynamic properties of importance to environmental processes and remediation. I. Previous thermodynamic property values for cadmium and some of its compounds
,” J. Phys. Chem. Ref. Data
27
, 915
(1998
).92.
K.
Lodders
, “Revised thermochemical properties of phosphinidene (PH), phosphine (PH3), phosphorus nitride (PN), and magnesium phosphate (Mg3P2O8)
,” J. Phys. Chem. Ref. Data
28
, 1705
(1999
).93.
K.
Lodders
, “Revised and updated thermochemical properties of the gases mercapto (HS), disulfur monoxide (S2O), thiazyl (NS), and thioxophosphino (PS)
,” J. Phys. Chem. Ref. Data
33
, 357
(2004
).94.
R. J. M.
Konings
and O.
Benes
, “The thermodynamic properties of the f-elements and their compounds. I. The lanthanide and actinide metals
,” J. Phys. Chem. Ref. Data
39
, 043102
(2010
).95.
R. J. M.
Konings
, O.
Benes
, A.
Kovacs
, D.
Manar
, D.
Sedmidubsky
, L.
Gorokhov
, V. S.
Iorish
, V.
Yungman
, E.
Shenyavaskaya
, and E.
Osina
, “The thermodynamic properties of the f-elements and their compounds. Part 2. The lanthanide and actinide oxides
,” J. Phys. Chem. Ref. Data
43
, 013101
(2014
).96.
J. B.
Pedley
and E. M.
Marshall
, “Thermochemical data for gaseous monoxides
,” J. Phys. Chem. Ref. Data
12
, 967
(1983
).97.
G. K.
White
and S. J.
Collocott
, “Heat capacity of reference materials: Cu and W
,” J. Phys. Chem. Ref. Data
13
, 1251
(1984
).98.
J. L.
Lyman
, “Thermodynamic properties of dioxygen difluoride (O2F2) and dioxygen fluoride (O2F)
,” J. Phys. Chem. Ref. Data
18
, 799
(1989
).99.
R. M.
Borges dos Santos
and J. A.
Martinho Simões
, “Energetics of the O–H bond in phenol and substituted phenols: A critical evaluation of literature data
,” J. Phys. Chem. Ref. Data
27
, 707
(1998
).100.
W. E.
Acree
, Jr., G.
Pilcher
, and M. D. M. C.
Ribeiro da Silva
, “The dissociation enthalpies of terminal (N–O) bonds in organic compounds
,” J. Phys. Chem. Ref. Data
34
, 553
(2005
).101.
W. E.
Acree
, Jr., G.
Pilcher
, and M. D. M. C.
Ribeiro da Silva
, ““Erratum: ‘The dissociation enthalpies of terminal (N–O) bonds in organic compounds’ [J. Phys. Chem. Ref. Data 34, 553 (2005)]
,” J. Phys. Chem. Ref. Data
34
, 1555
(2005
).102.
D. R.
Stull
, JANAF Thermochemical Tables, Joint Army-Navy-Air Force-ARPA-NASA Thermochemical Working Group, Dow Chemical Company, Clearinghouse for Federal Scientific and Technical Information, Springfield, VA, 1965
.103.
D. R.
Stull
and H.
Prophet
, JANAF Thermochemical Tables
, 2nd ed., National Standard Reference Data System (National Bureau of Standards
, 1971
), NSRDS-NBS 37.104.
M. W.
Chase
, J. L.
Curnutt
, A. T.
Hu
, H.
Prophet
, A. N.
Syverud
, and L. C.
Walker
, “JANAF thermochemical tables, 1974 supplement
,” J. Phys. Chem. Ref. Data
3
, 311
(1974
).105.
M. W.
Chase
, J. L.
Curnutt
, H.
Prophet
, R. A.
McDonald
, and A. N.
Syverud
, “JANAF thermochemical tables, 1982 Supplement
,” J. Phys. Chem. Ref. Data
4
, 1
(1975
).106.
M. W.
Chase
, Jr., J. L.
Curnutt
, R. A.
McDonald
, and A. N.
Syverud
, “JANAF thermochemical tables, 1978 supplement
,” J. Phys. Chem. Ref. Data
7
, 793
(1978
).107.
M. W.
Chase
, Jr. , J. L.
Curnutt
, J. R.
Downey
, Jr. , R. A.
McDonald
, A. N.
Syverud
, and E. A.
Valenzuela
, “JANAF thermochemical tables, 1982 Supplement
,” J. Phys. Chem. Ref. Data
11
, 695
(1982
).108.
M. W.
Chase
, C. A.
Davies
, J. R.
Downey
, Jr, D. A.
Frurip
, R. A.
McDonald
, and A. N.
Syvenud
, “JANAF thermochemical tables, Third edition
,” J. Phys. Chem. Ref. Data
14
(Suppl. 1
), 1
–1856
(1985
).109.
C. B.
Alcock
, M. W.
Chase
, and V. P.
ltkin
, “Thermodynamic properties of the group IA Elements
,” J. Phys. Chem. Ref. Data
23
, 385
(1994
).110.
M. W.
Chase
, “NIST-JANAF thermochemical tables for the oxygen fluorides
,” J. Phys. Chem. Ref. Data
25
, 551
(1996
).111.
M. W.
Chase
, “NIST-JANAF thermochemical tables for the bromine oxides
,” J. Phys. Chem. Ref. Data
25
, 1069
(1996
).112.
M. W.
Chase
, “NIST-JANAF thermochemical tables for the iodine oxides
,” J. Phys. Chem. Ref. Data
25
, 1297
(1996
).113.
M.
Chase
and M.
Chase
, “NIST-JANAF thermochemical tables, Fourth edition
,” J. Phys. Chem. Ref. Data, Monogr.
9
, 1963
(1998
), available at https://srd.nist.gov/JPCRD/jpcrdM9.pdf.114.
O. V.
Dorofeeva
, V. P.
Novikov
, and D. B.
Neuman
, “NIST-JANAF thermochemical tables. I. Ten organic molecules related to atmospheric chemistry
,” J. Phys. Chem. Ref. Data
30
, 475
(2001
).115.
O. V.
Dorofeeva
, V. S.
Iorish
, V. P.
Novikov
, and D. B.
Neumann
, “NIST-JANAF thermochemical tables. II. Three molecules related to atmospheric chemistry: HNO3, H2SO4, and H2O2
,” J. Phys. Chem. Ref. Data
32
, 879
(2003
).116.
E. A.
Shenyavskaya
and V. S.
Yungman
, “NIST-JANAF thermochemical tables. III. Diatomic hydrogen halide gases
,” J. Phys. Chem. Ref. Data
33
, 923
(2004
).117.
D. D.
Wagman
, W. H.
Evans
, V. B.
Parker
, R. H. .
Schumm
, I.
Halow
, S. M.
Bailey
, K. L.
Churney
, and R. L.
Nuttall
, “The NBS tables of chemical thermodynamics properties—Selected values for inorganic and C1 and C2 organic substances in SI units
,” J. Phys. Chem. Ref. Data
11
, 1
–392
(1982
), available at https://srd.nist.gov/JPCRD/jpcrdS2Vol11.pdf.118.
S. G.
Lias
, J. F.
Liebman
, and R. D.
Levin
, “Evaluated gas phase basicities and proton affinities of molecules, heats of formation of protonated molecules
,” J. Phys. Chem. Ref. Data
13
, 695
(1984
).119.
V. B.
Parker
, W. H.
Evans
, and R. L.
Nuttall
, “The thermochemical measurements on rubidium compounds: A comparison of measured values with those predicted from the NBS tables of chemical and thermodynamic properties
,” J. Phys. Chem. Ref. Data
16
, 7
(1987
).120.
J. T.
Herron
, “Thermochemical data on gas phase compounds of sulfur, fluorine, oxygen, and hydrogen related to pyrolysis and oxidation of sulfur hexafluoride
,” J. Phys. Chem. Ref. Data
16
, 1
(1987
).121.
S. G.
Lias
, J. E.
Bartmess
, J. F.
Liebman
, J. L.
Holmes
, R. D.
Levin
, and W. G.
Mallard
, “Gas-phase ion and neutral thermochemistry
,” J. Phys. Chem. Ref. Data
17
, 1
–872
(1988
).122.
E. P. L.
Hunter
and S. G.
Lias
, “Evaluated gas phase basicities and proton affinities of molecules: An Update
,” J. Phys. Chem. Ref. Data
27
, 413
(1998
).123.
J. A.
Manion
, “Evaluated enthalpies of formation of the stable closed shell C1 and C2 chlorinated hydrocarbons
,” J. Phys. Chem. Ref. Data
31
, 123
(2002
).124.
R. D.
Chirico
, A.
Kazakov
, A.
Bazyleva
, V.
Diky
, K.
Kroenlein
, V. N.
Emel'yanenko
, and S. P.
Verevkin
, “Critical evaluation of thermodynamic properties for halobenzoic acids through consistency analyses for results from experiment and computational chemistry
,” J. Phys. Chem. Ref. Data
46
, 023105
(2017
).125.
A. H.
Harvey
and D. R.
Burgess
, “Fifty years of reference data
,” J. Phys. Chem. Ref. Data
50
, 010401
(2021
).126.
D.
Rowland
, S. Z. S.
Al Ghafri
, and E. F.
May
, “Wide-ranging reference correlations for dilute gas transport properties based on ab initio calculations and viscosity ratio measurements
,” J. Phys. Chem. Ref. Data
49
, 013101
(2020
).© 2021 Author(s). Published by AIP Publishing on behalf of the National Institute of Standards and Technology.
2021
Author(s)
You do not currently have access to this content.