The effective attenuation length (EAL) is a useful parameter in quantitative applications of x-ray photoelectron spectroscopy (XPS). This parameter is used in place of the inelastic mean free path (IMFP) in expressions for different XPS applications to correct those expressions for elastic scattering of the photoelectrons. We consider expressions used to determine (i) the thickness of an overlayer film on a planar substrate, (ii) the surface composition, (iii) the depth of a thin marker or delta layer, and (iv) the shell thickness of a core–shell nanoparticle. An EAL can be used for each of these applications. In general, the EAL depends on the particular defining equation as well as on the XPS configuration. Many attempts were made in the 1970s and 1980s to measure EALs for the determination of overlayer-film thicknesses, but there were often wide scatters in the reported results due to the difficulty in preparing uniform films with known thicknesses. We have therefore been motivated to calculate EALs for each application. The SRD 82 database from the National Institute of Standards and Technology (NIST) provides EALs for the measurement of overlayer-film thicknesses and of marker-layer depths. These EALs can be determined for photoelectron energies between 50 eV and 2 keV and for user-specified XPS configurations. We review EAL predictive equations for the determination of overlayer-film thicknesses on a planar substrate for XPS with unpolarized x rays and with linearly polarized x rays as well as an EAL predictive equation for quantitative analysis by XPS. These equations are simple analytical expressions that are valid for well-defined ranges of experimental conditions and for useful ranges of electron energies. We also point out that EALs for the determination of overlayer-film thicknesses can be derived from the simulated photoelectron intensities obtained from the NIST Database for the Simulation of Electron Spectra for Surface Analysis (SRD 100). Where possible, we make comparisons of the calculated EALs with illustrative experimental results. A key parameter in the EAL predictive equations is the so-called albedo, a useful measure of the strength of elastic-scattering effects in a material. The albedo is a simple function of the IMFP and the transport mean free path (TRMFP). We provide a tabulation of albedo and TRMFP values in the supplementary material for 41 elemental solids and 42 inorganic compounds for photoelectron energies between 50 eV and 30 keV. For other materials, albedo values can be determined from IMFP and TRMFP data available in the NIST SRD 82 and SRD 100 databases.

1.
ISO 18115-1
,
Surface Chemical Analysis—Vocabulary, Part 1: General Terms and Terms Used in Spectroscopy
(
International Organization for Standardization
,
Geneva
,
2013
), https://myavs.avs.org/eweb/StartPage.aspx?Site=AVS and https://www.emsl.pnnl.gov/emslweb/vocabulary.
2.
C. J.
Powell
and
A.
Jablonski
, “
Progress in quantitative surface analysis by X-ray photoelectron spectroscopy: Current status and perspectives
,”
J. Electron Spectrosc. Relat. Phenom.
178-179
,
331
346
(
2010
).
3.
S.
Tougaard
, “
Energy loss in XPS: Fundamental processes and applications for quantification, non-destructive depth profiling and 3D imaging
,”
J. Electron Spectrosc. Relat. Phenom.
178-179
,
128
153
(
2010
).
4.
N. S.
Faradzhev
,
S. B.
Hill
, and
C. J.
Powell
, “
Quantitative analysis of trace levels of surface contamination by X-ray photoelectron spectroscopy. Part II: Systematic uncertainties and absolute quantification
,”
Surf. Interface Anal.
49
,
1214
1224
(
2017
).
5.
C. J.
Powell
and
A.
Jablonski
, “
Surface sensitivity of X-ray photoelectron spectroscopy
,”
Nucl. Instrum. Methods Phys. Res.
601
,
54
65
(
2009
).
6.
A.
Jablonski
and
C. J.
Powell
, “
The electron attenuation length revisited
,”
Surf. Sci. Rep.
47
,
33
92
(
2002
).
7.
C. J.
Powell
and
A.
Jablonski
, “
Electron effective attenuation lengths for applications in Auger electron spectroscopy and X-ray photoelectron spectroscopy
,”
Surf. Interface Anal.
33
,
211
229
(
2002
).
8.
B. L.
Henke
, “
Ultrasoft X-ray reflection, refraction, and production of photoelectrons (100-1000-eV region)
,”
Phys. Rev. A
6
,
94
104
(
1972
).
9.
C. S.
Fadley
,
R. J.
Baird
,
W.
Siekhaus
,
T.
Novakov
, and
S. Å. L.
Bergström
, “
Surface analysis and angular distributions in X-ray photoelectron spectroscopy
,”
J. Electron Spectrosc. Relat. Phenom.
4
,
93
137
(
1974
).
10.
C. S.
Fadley
, “
Solid state—and surface—analysis by means of angular-dependent X-ray photoelectron spectroscopy
,” in
Progress in Solid State Chemistry
, edited by
G.
Somorjai
and
J.
McCaldin
(
Pergamon Press
,
New York
,
1976
), Vol. 11, pp.
265
343
.
11.
C. J.
Powell
, “
Attenuation lengths of low-energy electrons in solids
,”
J. Electron Spectrosc. Relat. Phenom.
44
,
29
46
(
1974
).
12.
C. R.
Brundle
, “
Application of electron spectroscopy to surface studies
,”
J. Vac. Sci. Technol.
11
,
212
224
(
1974
).
13.
I.
Lindau
and
W. E.
Spicer
, “
Probing depth in photoemission and Auger-electron spectroscopy
,”
J. Electron Spectrosc. Relat. Phenom.
3
,
409
413
(
1974
).
14.
M. P.
Seah
and
W. A.
Dench
, “
Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids
,”
Surf. Interface Anal.
1
,
2
11
(
1979
).
15.
M. L.
Tarng
and
G. K.
Wehner
, “
Escape length of Auger electrons
,”
J. Appl. Phys.
44
,
1534
1540
(
1973
).
16.
C. J.
Powell
and
A.
Jablonski
, “
Evaluation of calculated and measured electron inelastic mean free paths near solid surfaces
,”
J. Phys. Chem. Ref. Data
28
,
19
62
(
1999
).
17.
A.
Jablonski
, “
Elastic scattering and quantification in AES and XPS
,”
Surf. Interface Anal.
14
,
659
685
(
1989
).
18.
W. H.
Gries
and
W.
Werner
, “
Take-off angle and film thickness dependences of the attenuation length of X-ray photoelectrons by a trajectory reversal method
,”
Surf. Interface Anal.
16
,
149
153
(
1990
).
19.
P. J.
Cumpson
, “
Elastic scattering corrections in AES and XPS: I. Two rapid Monte Carlo methods for calculating the depth distribution function
,”
Surf. Interface Anal.
20
,
727
741
(
1993
).
20.
A.
Jablonski
and
C. J.
Powell
, “
Comparisons of practical attenuation lengths obtained from different algorithms for application in XPS
,”
Surf. Sci.
520
,
78
96
(
2002
).
21.
W. S. M.
Werner
, “
Towards a universal curve for electron attenuation: Elastic scattering data for 45 elements
,”
Surf. Interface Anal.
18
,
217
228
(
1992
).
22.
A.
Jablonski
and
S.
Tougaard
, “
Practical correction formula for elastic electron scattering effects in attenuation of Auger electrons and photoelectrons
,”
Surf. Interface Anal.
26
,
17
29
(
1998
).
23.
A.
Jablonski
and
S.
Tougaard
, “
Evaluation of validity of the depth-dependent correction formula (CF) for elastic electron scattering effects in AES and XPS
,”
Surf. Interface Anal.
26
,
374
384
(
1998
).
24.
A.
Jablonski
, “
Emission depth distribution function for photoelectrons emitted by laboratory hard X-ray radiation sources
,”
J. Electron Spectrosc. Relat. Phenom.
195
,
26
42
(
2014
).
25.
A.
Jablonski
and
H.
Ebel
, “
Comparison of electron attenuation lengths and escape depths with inelastic mean free paths
,”
Surf. Interface Anal.
11
,
627
632
(
1988
).
26.
W. S. M.
Werner
and
I. S.
Tilinin
, “
Attenuation of electrons in non-crystalline solids
,”
Surf. Sci.
268
,
L319
L324
(
1992
).
27.
I. S.
Tilinin
,
A.
Jablonski
,
J.
Zemek
, and
S.
Hucek
, “
Escape probability of signal photoelectrons from non-crystalline solids: Influence of anisotropy of photoemission
,”
J. Electron Spectrosc. Relat. Phenom.
87
,
127
140
(
1997
).
28.
S.
Hucek
,
J.
Zemek
, and
A.
Jablonski
, “
Escape probability of O 1s photoelectrons leaving copper oxide
,”
J. Electron Spectrosc. Relat. Phenom.
85
,
257
262
(
1997
).
29.
J.
Zemek
,
S.
Hucek
,
A.
Jablonski
, and
I. S.
Tilinin
, “
Escape probability of s-photoelectrons leaving aluminium and copper oxides
,”
Surf. Interface Anal.
26
,
182
187
(
1998
).
30.
J.
Zemek
and
S.
Hucek
, “
Experiments to determine the escape probability of photoelectrons
,”
Fresenius’ J. Anal. Chem.
363
,
156
159
(
1999
).
31.
S.
Hucek
,
J.
Zemek
,
A.
Jablonski
, and
I. S.
Tilinin
, “
Emission depth distribution function of Al 2s photoelectrons in Al2O3
,”
Surf. Rev. Lett.
7
,
109
114
(
2000
).
32.
J.
Zemek
,
P.
Jiricek
,
S.
Hucek
,
A.
Jablonski
, and
B.
Lesiak
, “
Escape probability of photoelectrons from silver sulphide
,”
Surf. Sci.
473
,
8
(
2001
).
33.
W. S. M.
Werner
, “
Electron transport for spectrum analysis and experiment design
,”
J. Electron Spectrosc. Relat. Phenom.
178-179
,
154
177
(
2010
).
34.
I. S.
Tilinin
and
W. S. M.
Werner
, “
Escape probability of Auger electrons from noncrystalline solids: Exact solution in the transport approximation
,”
Phys. Rev. B
46
,
13739
13746
(
1992
).
35.
M. B.
Trzhaskovskaya
,
V. I.
Nefedov
, and
V. G.
Yarzhemsky
, “
Photoelectron angular distribution parameters for elements Z=1 to Z=54 in the photoelectron energy range 100-5000 eV
,”
At. Data Nucl. Data Tables
77
,
97
159
(
2001
).
36.
M. B.
Trzhaskovskaya
,
V. I.
Nefedov
, and
V. G.
Yarzhemsky
, “
Photoelectron angular distribution parameters for elements Z=55 to Z=100 in the photoelectron energy range 100-5000 eV
,”
At. Data Nucl. Data Tables
82
,
257
311
(
2002
).
37.
M. B.
Trzhaskovskaya
,
V. K.
Nikulin
,
V. I.
Nefedov
, and
V. G.
Yarzhemsky
, “
Non-dipole second order parameters of the photoelectron angular distribution for elements z=1-100 in the photoelectron energy range 1-10 keV
,”
At. Data. Nucl. Data Tables
92
,
245
(
2006
).
38.
S.
Chandrasekhar
,
Radiative Transfer
(
Dover Publications, Inc.
,
New York
,
1960
).
39.
A.
Jablonski
, “
The Chandrasekhar function revisited
,”
Comput. Phys. Commun.
196
,
416
428
(
2015
).
40.
C. J.
Powell
and
A.
Jablonski
, NIST Electron Effective-Attenuation-Length Database, Version 1.3, Standard Reference Data Program Database 82,
US Department of Commerce, National Institute of Standards and Technology
,
Gaithersburg, MD
,
2011
, https://www.nist.gov/srd/nist-standard-reference-database-82.
41.
A.
Jablonski
and
C. J.
Powell
, “
Improved algorithm for calculating transport cross sections of electrons with energies from 50 eV to 30 keV
,”
Phys. Rev. B
76
,
085123
(
2007
).
42.
W. S. M.
Werner
,
W.
Smekal
, and
C. J.
Powell
, NIST Database for the Simulation of Electron Spectra for Surface Analysis, Version 2.1, Standard Reference Data Program SRD 100,
U.S. Department of Commerce, National Institute of Standards and Technology
,
Gaithersburg, MD
,
2017
, https://www.nist.gov/srd/nist-standard-reference-database-100.
43.
W.
Smekal
,
W. S. M.
Werner
, and
C. J.
Powell
, “
Simulation of electron spectra for surface analysis (SESSA): A novel software tool for quantitative auger-electron spectroscopy and X-ray photoelectron spectroscopy
,”
Surf. Interface Anal.
37
,
1059
1067
(
2005
).
44.
A.
Jablonski
, “
Photoelectron transport in the surface region of solids: Universal analytical formalism for quantitative applications of electron spectroscopies
,”
J. Phys. D: Appl. Phys.
48
,
075301
(
2015
);
Erratum 49,
289501
(
2016
).
45.
A.
Jablonski
and
C. J.
Powell
, “
Practical expressions for the mean escape depth, the information depth, and the effective attenuation length in auger-electron spectroscopy and x-ray photoelectron spectroscopy
,”
J. Vac. Sci. Technol., A
27
,
253
261
(
2009
).
46.
A.
Jablonski
and
C. J.
Powell
, “
Effective attenuation lengths for photoelectrons emitted by high-energy laboratory sources
,”
J. Electron Spectrosc. Relat. Phenom.
199
,
27
37
(
2015
).
47.
A.
Jablonski
, “
Parameterization of HAXPES photoelectrons with kinetic energies up to 10 keV
,”
Appl. Surf. Sci.
346
,
503
519
(
2015
).
48.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
, “
Calculations of electron mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range
,”
Surf. Interface Anal.
43
,
689
713
(
2011
).
49.
M. P.
Seah
and
I. S.
Gilmore
, “
Simplified equations for correction parameters for elastic scattering effects in AES and XPS for Q, β and attenuation lengths
,”
Surf. Interface Anal.
31
,
835
846
(
2001
).
50.
M. P.
Seah
, “
Simple universal curve for the energy-dependent electron attenuation length for all materials
,”
Surf. Interface Anal.
44
,
1353
1359
(
2012
).
51.
A.
Jablonski
and
S.
Tougaard
, “
Comparison of the attenuation lengths and the inelastic mean free path for photoelectrons in silver
,”
J. Vac. Sci. Technol., A
8
,
106
116
(
1990
).
52.
A.
Jablonski
, “
Photoemission from ultrathin overlayers
,”
J. Electron Spectrosc. Relat. Phenom.
185
,
498
508
(
2012
).
53.
A.
Jablonski
, “
Evaluation of procedures for overlayer thickness determination from XPS intensities
,”
Surf. Sci.
688
,
14
24
(
2019
).
54.
A.
Jablonski
and
C. J.
Powell
, “
Effective attenuation lengths for quantitative determination of surface composition by Auger-electron spectroscopy and X-ray photoelectron spectroscopy
,”
J. Electron Spectrosc. Relat. Phenom.
218
,
1
12
(
2017
).
55.
A.
Jablonski
and
J.
Zemek
, “
Overlayer thickness determination by XPS using the multiline approach
,”
Surf. Interface Anal.
41
,
193
204
(
2009
).
56.
C. J.
Powell
,
W. S. M.
Werner
,
W.
Smekal
, and
G.
Tasneem
, “
Effective attenuation lengths for photoelectrons in thin films of silicon oxynitride and hafnium oxynitride on silicon
,”
Surf. Interface Anal.
45
,
628
(
2013
).
57.
T.
Graber
,
F.
Forster
,
A.
Schöll
, and
F.
Reinert
, “
Experimental determination of the attenuation length of electrons in organic molecular solids: The example of PTCDA
,”
Surf. Sci.
605
,
878
882
(
2011
).
58.
L.
Kilian
,
E.
Umbach
, and
M.
Sokolowski
, “
Molecular beam epitaxy of organic films investigated by high resolution low energy electron diffraction (SPA-LEED): 3,4,9,10-perylenetetracarboxylicacid-dianhydride (PTCDA) on Ag(111)
,”
Surf. Sci.
573
,
359
378
(
2004
).
59.
W. F.
Egelhoff
, “
X-ray photoelectron and Auger-electron forward scattering: A new tool for studying epitaxial growth and core-level binding-energy shifts
,”
Phys. Rev. B
30
,
1052
(
1984
).
60.
W. F.
Egelhoff
, “
X-ray photoelectron and Auger electron forward scattering: A new tool for surface crystallography
,”
Crit. Rev. Solid State Mater. Sci.
16
,
213
235
(
1990
).
61.
H. E.
Bishop
, “
The effects of photoelectron diffraction on quantitative X-ray photoelectron spectroscopy
,”
Surf. Interface Anal.
17
,
197
202
(
1991
).
62.
M. P.
Seah
and
S. J.
Spencer
, “
Energy dependence of the electron attenuation length in silicon dioxide
,”
Meas. Sci. Technol.
22
,
115602
(
2011
).
63.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
, “
Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range
,”
Surf. Interface Anal.
21
,
165
176
(
1994
).
64.
F.
Salvat
,
A.
Jablonski
, and
C. J.
Powell
, “
ELSEPA: Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules
,”
Comput. Phys. Commun.
165
,
157
190
(
2005
).
65.
M. P.
Seah
, “
Ultrathin SiO2 on Si. VI. Evaluation of uncertainties in thickness measurement using XPS
,”
Surf. Interface Anal.
37
,
300
309
(
2005
).
66.

Certain commercial products are identified to specify the experimental conditions. This identification does not imply that the products are recommended or endorsed by the National Institute of Standards and Technology, or that they are necessarily the most suitable for the purposes described.

67.
M. P.
Seah
and
R.
White
, “
Ultrathin SiO2 on Si. III. Mapping the layer thickness efficiently by XPS
,”
Surf. Interface Anal.
33
,
960
(
2002
).
68.
J. M.
Hill
,
D. G.
Royce
,
C. S.
Fadley
,
L. F.
Wagner
, and
F. J.
Grunthaner
, “
Properties of oxidized silicon as determined by angular-dependent X-ray photoelectron spectroscopy
,”
Chem. Phys. Lett.
44
,
225
(
1976
).
69.
M. P.
Seah
,
S. J.
Spencer
,
F.
Bensebaa
,
I.
Vickridge
,
H.
Danzebrink
,
M.
Krumrey
,
T.
Gross
,
W.
Oesterle
,
E.
Wendler
,
B.
Rheinländer
,
Y.
Azuma
,
I.
Kojima
,
N.
Suzuki
,
M.
Suzuki
,
S.
Tanuma
,
D. W.
Moon
,
H. J.
Lee
,
H. M.
Cho
,
H. Y.
Chen
,
A. T. S.
Wee
,
T.
Osipowicz
,
J. S.
Pan
,
W. A.
Jordaan
,
R.
Hauert
,
U.
Klotz
,
C.
van der Marel
,
M.
Verheijen
,
Y.
Tamminga
,
C.
Jeynes
,
P.
Bailey
,
S.
Biswas
,
U.
Falke
,
N. V.
Nguyen
,
D.
Chandler-Horowitz
,
J. R.
Ehrstein
,
D.
Muller
, and
J. A.
Dura
, “
Critical review of the current status of thickness measurements for ultrathin SiO2 on Si: V. Results of a CCQM pilot study
,”
Surf. Interface Anal.
36
,
1269
(
2004
).
70.
M. P.
Seah
,
W. E. S.
Unger
,
H.
Wang
,
W.
Jordaan
,
Th.
Gross
,
J. A.
Dura
,
D. W.
Moon
,
P.
Totarong
,
M.
Krumrey
,
R.
Hauert
, and
M.
Zhiqiang
, “
Ultra-thin SiO2 on Si: IX. Absolute measurements of the amount of silicon oxide as a thickness of SiO2 on Si
,”
Surf. Interface Anal.
41
,
430
(
2009
).
71.
M. P.
Seah
and
S. J.
Spencer
, “
Ultrathin SiO2 on Si. II. Issues in quantification of the oxide thickness
,”
Surf. Interface Anal.
33
,
640
(
2002
).
72.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
, “
Calculations of electron inelastic mean free paths: III. Data for 15 inorganic compounds over the 50-2000 eV range
,”
Surf. Interface Anal.
17
,
927
939
(
1991
).
73.
C. J.
Powell
and
A.
Jablonski
, “
Effects of elastic-electron scattering on measurements of silicon dioxide film thicknesses by X-ray photoelectron spectroscopy
,”
J. Electron Spectrosc. Relat. Phenom.
114-116
,
1139
1143
(
2001
).
74.
M. P.
Seah
and
S. J.
Spencer
, “
Ultrathin SiO2 on Si. VII. Angular accuracy in XPS and an accurate attenuation length
,”
Surf. Interface Anal.
37
,
731
(
2005
).
75.
H.
Shinotsuka
,
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
, “
Calculations of electron inelastic mean free paths. XII. Data for 42 inorganic compounds over the 50 eV to 200 keV range with the full Penn algorithm
,”
Surf. Interface Anal.
51
,
427
(
2019
).
76.
C. J.
Powell
,
W. S. M.
Werner
, and
W.
Smekal
, “
Refined calculations of effective attenuation lengths for SiO2 film thicknesses by X-ray photoelectron spectroscopy
,”
Appl. Phys. Lett.
89
,
252116
(
2006
).
77.
K. J.
Kim
and
M. P.
Seah
, “
Ultrathin SiO2 on Si. VIII. Accuracy of method, linearity and attenuation lengths for XPS
,”
Surf. Interface Anal.
39
,
512
(
2007
).
78.
K. J.
Kim
,
Y.-S.
Kim
,
J. S.
Jang
,
J. W.
Kim
, and
K. W.
Kim
, “
A mutual calibration method to certify the thickness of nanometre oxide films
,”
Metrologia
45
,
507
(
2008
).
79.
K. J.
Kim
,
J. S.
Jang
,
J.-H.
Lee
,
Y.-J.
Jee
, and
C.-S.
Jun
, “
Determination of the absolute thickness of ultrathin Al2O3 overlayers on Si(100) substrate
,”
Anal. Chem.
81
,
8519
(
2009
).
80.
K. J.
Kim
,
S. M.
Lee
,
J. S.
Jang
, and
M.
Moret
, “
Thickness measurement of a thin hetero-oxide film with an interfacial oxide layer by X-ray photoelectron spectroscopy
,”
Appl. Surf. Sci.
258
,
3552
(
2012
).
81.
S.
Gurban
,
G.
Gergely
,
J.
Toth
,
D.
Varga
,
A.
Jablonski
, and
M.
Menyhard
, “
Experimental determination of the inelastic mean free path (IMFP) of electrons in selected oxide films applying surface excitation correction
,”
Surf. Interface Anal.
38
,
624
(
2006
).
82.
S.
Tougaard
, QUASES-Tougaard: Software for Quantitative XPS/AES of Surface Nano-Structures by Analysis of the Peak Shape and Background, QUASES Tougaard ApS, Odense, Denmark, 2011, http://www.quases.com.
83.
C. J.
Powell
and
A.
Jablonski
, “
Effective attenuation length dependence on photoelectron kinetic energy for gold from 1 keV to 10 keV: Role of island growth in overlayer experiments
,”
J. Electron Spectrosc. Relat. Phenom.
236
,
27
32
(
2019
).
84.
P. J.
Cumpson
and
M. P.
Seah
, “
Elastic scattering corrections in AES. II. Estimating attenuation lengths and conditions required for their valid use in overlayer/substrate experiments
,”
Surf. Interface Anal.
25
,
430
446
(
1997
).
85.
C. D.
Wagner
,
L. E.
Davis
, and
W. M.
Riggs
, “
The energy dependence of the electron mean free path
,”
Surf. Interface Anal.
2
,
53
55
(
1980
).
86.
C. J.
Powell
, “
The energy dependence of electron attenuation lengths
,”
Surf. Interface Anal.
7
,
256
262
(
1985
).
87.
J.
Schweppe
,
R. D.
Deslattes
,
T.
Mooney
, and
C. J.
Powell
, “
Accurate measurement of Mg and Al Kα1,2 X-ray energy profiles
,”
J. Electron Spectrosc. Relat. Phenom.
67
,
463
478
(
1994
).
88.
L.
Kövér
, “
X-ray photoelectron spectroscopy using hard X-rays
,”
J. Electron Spectrosc. Relat. Phenom.
178-179
,
241
257
(
2010
).
89.
C. S.
Fadley
and
S.
Nemšák
, “
Some future perspectives in soft- and hard- X-ray photoemission
,”
J. Electron Spectrosc. Relat. Phenom.
195
,
409
422
(
2014
).
90.
Hard X-Ray Photoelectron Spectroscopy (HAXPES)
, edited by
J. C.
Woicik
(
Springer
,
Cham; Heidelberg; New York; Dordrecht; London
,
2016
).
91.
R. D.
Deslattes
,
E. G.
Kessler
,
P.
Indelicato
,
L.
de Billy
,
E.
Lindroth
, and
J.
Anton
, “
X-ray transition energies: New approach to a comprehensive evaluation
,”
Rev. Mod. Phys.
75
,
35
(
2003
).
92.
A.
Jablonski
, “
Modeling and parameterization of photoelectrons emitted in condensed matter by linearly polarized synchrotron radiation
,”
Surf. Sci.
667
,
121
137
(
2018
).
93.
S.
Tanuma
,
H.
Yoshikawa
,
H.
Shinotsuka
, and
R.
Ueda
, “
Calculations of mean escape depths of photoelectrons in elemental solids excited by linearly polarized X-rays for high-energy photoelectron spectroscopy
,”
J. Electron Spectrosc. Relat. Phenom.
190
,
127
136
(
2013
).
94.
J.
Rubio-Zuazo
and
G. R.
Castro
, “
Effective attenuation length dependence on photoelectron kinetic energy for Au from 1 keV to 15 keV
,”
J. Electron Spectrosc. Relat. Phenom.
184
,
384
390
(
2011
).
95.
A.
Jablonski
, “
Database of correction parameters for the elastic scattering effects in XPS
,”
Surf. Interface Anal.
23
,
29
37
(
1995
).
96.
A.
Jablonski
and
J.
Zemek
, “
Angular distribution of photoemission from amorphous and polycrystalline solids
,”
Phys. Rev. B
48
,
4799
4805
(
1993
).
97.
A.
Jablonski
and
C. J.
Powell
, “
Elastic-electron-scattering effects on angular distribution in x-ray-photoelectron spectroscopy
,”
Phys. Rev. B
50
,
4739
4748
(
1994
).
98.
A.
Jablonski
and
C. J.
Powell
, “
Elastic photoelectron-scattering effects in quantitative X-ray photoelectron spectroscopy
,”
Surf. Sci.
606
,
644
651
(
2012
).
99.
A.
Jablonski
, “
Angular distribution of photoelectrons emitted by the laboratory soft and hard X-ray radiation sources
,”
J. Electron Spectrosc. Relat. Phenom.
189
,
81
95
(
2013
).
100.
A.
Jablonski
and
I. S.
Tilinin
, “
Towards a universal description of elastic scattering effects in XPS
,”
J. Electron Spectrosc. Relat. Phenom.
74
,
207
229
(
1995
).
101.
A.
Jablonski
, “
Universal quantification of elastic scattering effects in AES and XPS
,”
Surf. Sci.
364
,
380
395
(
1996
).
102.
A.
Jablonski
and
C. J.
Powell
, “
Effective attenuation lengths in electron spectroscopies
,”
J. Alloys Compd.
362
,
26
32
(
2004
).
103.
A.
Jablonski
, “
Determination of surface composition by X-ray photoelectron spectroscopy taking into account elastic photoelectron collisions
,”
Anal. Sci.
26
,
155
164
(
2010
).
104.
D. P.
Woodruff
, “
Non-dipole effects in high-energy photoelectron emission; Identification and quantification using X-ray standing waves
,”
Nucl. Instr. Meth. Phys. Res. A.
547
,
187
195
(
2015
).
105.
Y.-I.
Suzuki
,
K.
Nishizawa
,
N.
Kurahaski
, and
T.
Suzuki
, “
Effective attenuation length of an electron in liquid water between 10 and 600 eV
,”
Phys. Rev. E
90
,
010302
(
2014
).
106.
B.
Winter
and
M.
Faubel
, “
Photoemission from liquid aqueous solutions
,”
Chem. Rev.
106
,
1176
1211
(
2006
).
107.
H.
Shinotsuka
,
B.
Da
,
S.
Tanuma
,
H.
Yoshikawa
,
C. J.
Powell
, and
D. R.
Penn
, “
Calculations of electron inelastic mean free paths. XI. Data for liquid water for energies from 50 eV to 30 keV
,”
Surf. Interface Anal.
49
,
238
252
(
2017
).
108.
D.
Emfietzoglou
,
I.
Kyriakou
,
R.
Garcia-Molina
, and
I.
Abril
, “
Inelastic mean free paths of low-energy electrons in condensed media: Beyond the standard models
,”
Surf. Interface Anal.
49
,
4
10
(
2017
).
109.
R.
Garcia-Molina
,
I.
Abril
,
I.
Kyriakou
, and
D.
Emfietzoglou
, “
Inelastic scattering and energy loss of swift electron beams in biologically relevant materials
,”
Surf. Interface Anal.
49
,
11
17
(
2017
).
110.
H. T.
Nguyen-Truong
, “
Low-energy electron inelastic mean free paths for liquid water
,”
J. Phys.: Condens Matter
30
,
155101
(
2018
).
111.
G.
Olivieri
,
K. M.
Parry
,
R.
D’Auria
,
D. J.
Tobias
, and
M. A.
Brown
, “
Specific anion effects at the aqueous solution-air interface: MD simulations, SESSA calculations, and photoelectron spectroscopy experiments
,”
J. Phys. Chem. B
122
,
910
918
(
2018
).
112.
S.
Tougaard
,
H. S.
Hansen
, and
M.
Neumann
, “
Test on validity of recent formalism for quantitative XPS/AES
,”
Surf. Sci.
244
,
125
134
(
1991
).
113.
S.
Tougaard
, “
Accuracy of the non-destructive surface nanostructure quantification technique based on analysis of the XPS or AES peak shape
,”
Surf. Interface Anal.
26
,
249
269
(
1998
).
114.
S.
Tougaard
and
A.
Jablonski
, “
Quantitative XPS: Influence of elastic electron scattering in quantification by peak shape analysis
,”
Surf. Interface Anal.
25
,
404
408
(
1997
).
115.
S.
Tanuma
, in
Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy
, edited by
D.
Briggs
and
J. T.
Grant
(
IM Publications and SurfaceSpectra Ltd.
,
Chichester, Manchester, UK
,
2003
), p.
259
.
116.
A. G.
Shard
, “
A straightforward method for interpreting XPS data from core-shell nanoparticles
,”
J. Phys. Chem. C
116
,
16806
16813
(
2012
).
117.
C. J.
Powell
,
W. S. M.
Werner
,
A. G.
Shard
, and
D. G.
Castner
, “
Evaluation of two methods for determining shell thicknesses of core-shell nanoparticles by X-ray photoelectron spectroscopy
,”
J. Phys. Chem. C
120
,
22730
22738
(
2016
).
118.
C. J.
Powell
,
W. S. M.
Werner
,
H.
Kalbe
,
A. G.
Shard
, and
D. G.
Castner
, “
Comparisons of analytical approaches for determining shell thicknesses of core-shell nanoparticles by X-ray photoelectron spectroscopy
,”
J. Phys. Chem. C
122
,
4073
4082
(
2018
).
119.
D. J. H.
Cant
,
Y.-C.
Wang
,
D. G.
Castner
, and
A. G.
Shard
, “
A technique for calculation of shell thicknesses for core-shell-shell nanoparticles from XPS data
,”
Surf. Interface Anal.
48
,
274
282
(
2016
).
120.
A.
Jablonski
, “
Analytical theory of elastic electron backscattering from elements, alloys and compounds: Comparison with experimental data
,”
J. Electron Spetrosc. Relat. Phenom.
206
,
24
45
(
2016
).
121.
C. J.
Powell
and
A.
Jablonski
, “
Evaluation of electron inelastic mean free paths for selected elements and compounds
,”
Surf. Interface Anal.
29
,
108
114
(
2000
).
122.
C. J.
Powell
, “
Practical guide for inelastic mean free paths, effective attenuation lengths, mean escape depths, and information depths in X-ray photoelectron spectroscopy
,”
J. Vac. Sci. Technol., A
38
,
023209
(
2020
).
123.
H.
Shinotsuka
,
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
, “
Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic Penn algorithm
,”
Surf. Interface Anal.
47
,
871
888
(
2015
).
124.
D. R.
Penn
, “
Electron mean free path calculations using a model dielectric function
,”
Phys. Rev. B
35
,
482
486
(
1987
).
125.
H.
Bethe
, “
Zur theorie des durchgangs schneller korpuskularstrahlen durch materie
,”
Ann. Phys.
397
,
325
400
(
1930
).
126.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
, “
Calculations of electron inelastic mean free paths. II. Data for 27 elements over the 50-2000 eV range
,”
Surf. Interface Anal.
17
,
911
926
(
1991
).
127.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
, “
Calculation of electron inelastic mean free paths (IMFPs). VII. Reliability of the TPP-2M IMFP predictive equation
,”
Surf. Interface Anal.
35
,
268
275
(
2003
).
128.
M. P.
Seah
, “
An accurate and simple universal curve for the energy-dependent electron inelastic mean free path
,”
Surf. Interface Anal.
44
,
497
503
(
2012
).
129.
American Institute of Physics Handbook
, 3rd ed., edited by
D. E.
Gray
(
McGraw-Hill
,
New York
,
1972
), pp.
9
17
.
130.
W. H.
Strehlow
and
E. L.
Cook
, “
Compilation of energy band gaps in elemental and binary compound semiconductors and insulators
,”
J. Phys. Chem. Ref. Data
2
,
163
193
(
1973
).
131.
CRC Handbook of Chemistry and Physics
, 95th ed., edited by
W. M.
Haynes
(
CRC Press
,
Boca Raton
,
2014
), pp.
12-90
12-99
.
132.
C.
Kittel
,
Introduction to Solid State Physics
, 6th ed. (
John Wiley
,
New York
,
1986
), p.
185
.
133.
C. M.
Wolfe
,
J.
Holonyak
, and
G. E.
Stillman
,
Physical Properties of Semiconductors
(
Prentice-Hall
,
Englewood Cliffs
,
1989
).
134.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
, “
Calculations of electron inelastic mean free paths (IMFPs). IV. Evaluation of calculated IMFPs and the predictive IMFP formula TPP-2 for electron energies between 50 and 2000 eV
,”
Surf. Interface Anal.
20
,
77
89
(
1993
).
135.
O.
Kubaschewski
and
C. B.
Alcock
,
Metallurgical Thermochemistry
, 5th ed. (
Pergamon Press
,
Oxford
,
1979
).
136.
W. H.
Gries
, “
Calculations of the electron inelastic mean free paths of X-ray photoelectrons and Auger electrons
,”
Surf. Interface Anal.
24
,
38
50
(
1996
).
137.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
, “
Calculations of electron inelastic mean free paths (IMFPs). VI. Analysis of the Gries inelastic scattering model and predictive IMFP equation
,”
Surf. Interface Anal.
25
,
25
35
(
1997
).
138.
C. J.
Powell
and
A.
Jablonski
, NIST Electron Inelastic-Mean-Free-Path Database, Version 1.2, Standard Reference Data Program Database 71,
US Department of Commerce, National Institute of Standards and Technology
,
Gaithersburg, MD
,
2010
, https://www.nist.gov/srd/nist-standard-reference-database-71.
139.
C. J.
Powell
,
A.
Jablonski
,
W. S. M.
Werner
, and
W.
Smekal
, “
Characterization of thin films on the nanometer scale by Auger electron spectroscopy and X-ray photoelectrons spectroscopy
,”
Appl. Surf. Sci.
239
,
470
480
(
2005
).
140.
A.
Jablonski
and
C. J.
Powell
, “
Evaluation of correction parameters for elastic-scattering effects in X-ray photoelectron spectroscopy and Auger-electron spectroscopy
,”
J. Vac. Sci. Technol., A
15
,
2095
2106
(
1997
).
141.
C. J.
Powell
, “
The quest for universal curves to describe the surface sensitivity of electron spectroscopies
,”
J. Electron Spectrosc. Relat. Phenom.
47
,
197
214
(
1988
).
142.
A.
Barbier
, “
Generalized model for interface description
,”
Surf. Science
406
,
69
81
(
1998
).
143.
C.
Argile
and
G. E.
Rhead
, “
Adsorbed layer and thin-film growth modes monitored by Auger-electron spectroscopy
,”
Surf. Sci. Rep.
10
,
277
356
(
1989
).
144.
See https://www.nist.gov/srd/surface-data for more information on and access to the NIST databases listed in Table 2.
145.
A.
Jablonski
and
S.
Tougaard
, “
Escape probability of electrons from solids. Influence of elastic electron scattering
,”
Surf. Sci.
432
,
211
227
(
1999
).
146.
A.
Jablonski
, “
Elastic photoelectron scattering effects in the XPS analysis of stratified samples
,”
J. Phys. D: Appl. Phys.
45
,
315302
(
2012
).
147.
A.
Jablonski
, “
Role of the emission depth distribution function in quantification of electron spectroscopies
,”
Surf. Sci.
586
,
115
128
(
2005
).
148.
W. S. M.
Werner
,
I. S.
Tilinin
,
H.
Beilschmidt
, and
M.
Hayek
, “
Simultaneous background subtraction and depth profile determination from AES/XPS measurements
,”
Surf. Interface Anal.
21
,
537
545
(
1994
).
149.
I. S.
Tilinin
,
A.
Jablonski
, and
S.
Tougaard
, “
Emission-depth dependence of the signal photoelectron energy spectrum
,”
Surf. Interface Anal.
25
,
119
131
(
1997
).
150.
A.
Jablonski
, “
A note on calculations of photoelectron partial intensities for energies reaching 4000 eV
,”
J. Electron Spectrosc. Relat. Phenom.
234
,
34
46
(
2019
).
151.
W. S. M.
Werner
, “
Electron transport in solids for quantitative surface analysis
,”
Surf. Interface Anal.
31
,
141
176
(
2001
).
152.
W. S. M.
Werner
, “
Simulation of electron spectra for surface analysis using the partial-intensity approach (PIA)
,”
Surf. Interface Anal.
37
,
846
860
(
2005
).
153.
M.
Novák
,
N.
Pauly
, and
A.
Dubus
, “
Polarization and dipole effects in hard X-ray photoelectron spectroscopy
,”
J. Electron Spectrosc. Relat. Phenom.
185
,
4
12
(
2012
).
154.
A.
Jablonski
, “
Remarks on the definition of the backscattering factor in AES
,”
Surf. Sci.
499
,
219
228
(
2002
).
155.
A.
Jablonski
and
C. J.
Powell
, “
The backscattering factor in Auger electron spectroscopy: New approach for an old subject
,”
Surf. Sci.
574
,
219
232
(
2005
).
156.
X.
Llovet
,
F.
Salvat
,
D.
Bote
,
F.
Salvat-Pujol
,
A.
Jablonski
, and
C. J.
Powell
, NIST Database of Cross Sections for Inner-Shell Ionization by Electron or Positron Impact, Version 1.0 Standard Reference Data Program, Database 164,
US Department of Commerce, National Institute of Standards and Technology
,
Gaithersburg, MD
,
2011
, https://www.nist.gov/srd/nist-standard-reference-database-164.
157.
A.
Jablonski
and
C. J.
Powell
, NIST Backscattering-Correction-Factor Database for Auger Electron Spectroscopy, Version 1.1, Standard Reference Data Program Database 154,
US Department of Commerce, National Institute of Standards and Technology
,
Gaithersburg, MD
,
2015
, https://www.nist.gov/srd/nist-standard-reference-database-154.
158.
F.
Salvat
,
A.
Jablonski
,
C. J.
Powell
, and
A. Y.
Lee
, NIST Electron Elastic-Scattering Cross-Section Database, Version 4.0, Standard Reference Data Program Database 64,
US Department of Commerce, National Institute of Standards and Technology
,
Gaithersburg, MD
,
2016
, https://srdata.nist.gov/srd64/.

Supplementary Material

You do not currently have access to this content.