Based on the conceptual design reports for the Future Circular Collider cryogenic system, the need for more accurate thermodynamic property models of cryogenic mixtures of noble gases was identified. Both academic institutes and industries have identified the lack of a reliable equation of state for mixtures used at very low temperatures. Detailed cryogenic architecture modeling and design cannot be carried out without accurate fluid properties. Therefore, the helium–neon equation was the first goal of this work, and it was further extended to other fluids beneficial for scientific and industrial applications beyond the particle physics needs. The properties of the noble gas mixtures of helium–neon, neon–argon, and helium–argon are accurately modeled with the equations of state explicit in the Helmholtz energy.

1.
A.
Abada
,
M.
Abbrescia
,
S. S.
AbdusSalam
 et al.,
Eur. Phys. J.: Spec. Top.
228
,
755
1107
(
2019
).
2.
D.-Y.
Peng
and
D. B.
Robinson
,
Ind. Eng. Chem.
15
,
59
64
(
1976
).
3.
H. A.
Lorentz
,
Ann. Phys.
248
,
127
136
(
1881
).
4.
D.
Berthelot
,
C. R. Hebdomadaires Séa. l’Acad. Sci.
126
,
1703
1706
(
1898
).
5.
I.
Cullimore
and
E. W.
Lemmon
, “
Preliminary equation of state for neon-argon mixture
” (unpublished) (
2010
).
6.
E. W.
Lemmon
, “
Preliminary equation of state for helium-neon mixture
” (unpublished) (
2016
).
7.
V. L.
Bondarenko
(private communication,
Bauman Moscow State Technical University
).
8.
E. W.
Lemmon
,
I. H.
Bell
,
M. L.
Huber
, and
M. O.
McLinden
, NIST Standard Reference Database: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology,
2018
, https://www.nist.gov/srd/refprop.
9.
I. H.
Bell
,
J.
Wronski
,
S.
Quoilin
, and
V.
Lemort
,
Ind. Eng. Chem. Res.
53
,
2498
2508
(
2014
).
10.
R.
Span
,
R.
Beckmüller
,
T.
Eckermann
,
S.
Herrig
,
S.
Hielscher
,
A.
Jäger
,
E.
Mickoleit
,
T.
Neumann
,
S.
Pohl
,
B.
Semrau
, and
M.
Thol
, TREND. Thermodynamic Reference and Engineering Data 4.0, 2019, http://www.thermo.ruhr-uni-bochum.de/.
11.
D. O.
Ortiz Vega
, Ph.D. thesis,
Texas A&M University
,
College Station, TX
,
2013
.
12.
M.
Thol
,
R.
Beckmüller
,
R.
Weiss
,
A. H.
Harvey
,
E. W.
Lemmon
,
R. T.
Jacobsen
, and
R.
Span
, “
Thermodynamic properties for neon for temperatures from the triple point to 700 K at pressures to 700 MPa
,”
J. Phys. Chem. Ref. Data
(unpublished).
13.
C.
Tegeler
,
R.
Span
, and
W.
Wagner
,
J. Phys. Chem. Ref. Data
28
,
779
850
(
1999
).
14.
O.
Kunz
,
R.
Klimeck
,
W.
Wagner
, and
M.
Jaeschke
,
GERG TM15
(
Fortschritt-Berichte VDI
,
2007
), Vol. 6.
15.
O.
Kunz
and
W.
Wagner
,
J. Chem. Eng. Data
57
,
3032
3091
(
2012
).
16.
I. H.
Bell
and
E. W.
Lemmon
,
J. Chem. Eng. Data
61
,
3752
3760
(
2016
).
17.
K.
Levenberg
,
Q. Appl. Math.
2
,
164
168
(
1944
).
18.
D. W.
Marquardt
,
J. Soc. Ind. Appl. Math.
11
,
431
441
(
1963
).
19.
J. W.
Leachman
,
R. T.
Jacobsen
,
E. W.
Lemmon
, and
S. G.
Penoncello
,
Thermodynamic Properties of Cryogenic Fluids
(
Springer International Publishing
,
Cham
,
2017
).
20.
C. K.
Heck
and
P. L.
Barrick
,
Advances in Cryogenic Engineering
(
Springer US
,
1967
), Vol. 12, pp.
714
718
.
22.
L.
Holborn
and
J.
Otto
,
Z. Angew. Phys.
23
,
77
94
(
1924
).
23.
J.
Kestin
,
Ö.
Korfali
,
J. V.
Sengers
, and
B.
Kamgar-Parsi
,
Physica A
106
,
415
442
(
1981
).
24.
J.
Kestin
and
A.
Nagashima
,
J. Chem. Phys.
40
,
3648
3654
(
1964
).
25.
I.
Richardson
and
J. W.
Leachman
,
private communication
(
Washington State University
,
2019
) (unpublished results).
26.
W. F.
Vogl
and
K. R.
Hall
,
Physica
59
,
529
535
(
1972
).
27.
V. V.
Pashkov
,
E. V.
Konovodchenko
, and
O. V.
Evdokumova
,
Eng. Phys. J.
4
,
603
608
(
1985
).
28.
R.
Berman
,
F. A. B.
Chaves
,
D. M.
Livesley
, and
C. D.
Swartz
,
J. Phys. C: Solid State Phys.
12
,
L777
L780
(
1979
).
29.
J.
Brewer
and
G. W.
Vaughn
,
J. Chem. Phys.
50
,
2960
2968
(
1969
).
30.
M. B.
Iomtev
,
A. I.
Doroshenko
,
L. S.
Kushner
,
K. M. A.
Sarov
, and
L. T.
Kalinichenko
,
Zh. Fiz. Khim.
51
,
1373
1376
(
1977
).
31.
C. M.
Knobler
,
J. J. M.
Beenakker
, and
H. F. P.
Knaap
,
Physica
25
,
909
916
(
1959
).
32.
J. C.
Mullins
, Ph.D. thesis,
Georgia Institute of Technology
,
Atlanta
,
1965
.
33.
J. C.
Mullins
and
W. T.
Ziegler
, “
The system helium-argon from 65° to 140°K up to pressures of 120 atm. Correlation of available phase equilibrium data
,” Technical Report No. 3 (project A-764),
Engineering Experiment Station, Georgia Institute of Technology
,
Atlanta
,
1965
, p.
9
.
34.
J. C.
Mullins
and
W. T.
Ziegler
, “
Phase equilibria in the argon-helium and argon-hydrogen systems from 68° to 108°K and pressures to 120 atmospheres
,” in
Int. Adv. Cryo. Eng.
(
Plenum Press
,
New York
,
1965
), Vol. 10, pp.
171
181
.
35.
J. E.
Sinor
and
F.
Kurata
,
J. Chem. Eng. Data
11
,
537
539
(
1966
).
36.
V. G.
Skripka
and
N. N.
Lobanova
,
Cryogenmash
13
,
90
103
(
1971
).
37.
W. B.
Streett
,
Trans. Faraday Soc.
65
,
696
(
1969
).
38.
W. B.
Streett
and
J. L. E.
Hill
,
Trans. Faraday Soc.
67
,
622
(
1971
).
39.
W. B.
Streett
and
A. L.
Erickson
,
Phys. Earth Planet. Inter.
5
,
357
366
(
1972
).
40.
A. L.
Blancett
,
K. R.
Hall
, and
F. B.
Canfield
,
Physica
47
,
75
91
(
1970
).
41.
B. E.
Kanishev
and
L. L.
Pitaevskaya
,
Inzh.-Fiz. Zh.
39
,
1090
1094
(
1980
).
42.
N. D.
Kosov
and
I. S.
Brovanov
,
Teploenergetika
22
,
87
89
(
1975
).
43.
V. Ya.
Maslennikova
,
V. A.
Abovskii
,
A. N.
Egorov
, and
D. S.
Tsiklis
,
Russ. J. Phys. Chem. A
52
,
2968
2969
(
1978
).
44.
V. N.
Popov
,
V. I.
Chernyshev
, and
V. R.
Petrov
, “
P-V-T-x dependence of helium-argon mixtures
,”
Moscow Energy Inst.
75
,
69
74
(
1970
).
45.
J. A.
Provine
and
F. B.
Canfield
,
Physica
52
,
79
91
(
1971
).
46.
D.
Vidal
,
L.
Guengant
,
P.
Malbrunot
, and
J.
Vermesse
,
Physica A
137
,
417
424
(
1986
).
47.
D.
Vidal
,
P.
Malbrunot
, and
J.
Vermesse
,
Int. J. Thermophys.
12
,
943
948
(
1991
).
48.
Y.
Hanayama
,
Ehime Daigaku Kiyo, Dai-3-bu
9
,
23
31
(
1978
).
49.
Y. L.
Kachanov
,
B. E.
Kanishev
, and
L. L.
Pitaevskaya
,
Inzh.-Fiz. Zh.
44
,
5
8
(
1983
).
50.
T.
Nishitake
and
Y.
Hanayama
, “
Measurements on adiabatic compressibility of helium-argon mixed gas under high pressure
,” Technical Report No. 4,
Ehime University
,
Matsuyama, Japan
,
1977
, Sec. III, Vol. 8, pp.
507
513
.
51.
N. K.
Kalfoglou
and
J. G.
Miller
,
J. Phys. Chem.
71
,
1256
1264
(
1967
).
52.
M. L.
Martin
,
R. D.
Trengove
,
K. R.
Harris
, and
P. J.
Dunlop
,
Aust. J. Chem.
35
,
1525
(
1982
).
53.
C. C.
Tanner
and
I.
Masson
,
Proc. R. Soc. London, Ser. A
126
,
268
288
(
1930
).
54.
W. B.
Streett
,
J. Chem. Phys.
42
,
500
503
(
1965
).
55.
W. B.
Streett
,
J. Chem. Phys.
46
,
3282
3286
(
1967
).
56.
W. B.
Streett
and
J. L. E.
Hill
,
J. Chem. Phys.
54
,
5088
5094
(
1971
).
57.
N. J.
Trappeniers
and
J. A.
Schouten
,
Physica
73
,
539
545
(
1974
).
58.
E. V.
Konovodchenko
,
V. V.
Pashkov
, and
Y. I.
Khokhlov
,
Ukr. Fiz. Zh.
26
,
1480
1485
(
1981
).
59.
U. K.
Deiters
and
T.
Kraska
,
High-Pressure Fluid Phase Equilibria: Phenomenology and Computation
(
Elsevier
,
Amsterdam
,
2012
), Vol. 2.
60.
A.
Deerenberg
,
J. A.
Schouten
, and
N. J.
Trappeniers
,
Physica A
101
,
459
476
(
1980
).
61.
E.
Tiesinga
,
P. J.
Mohr
,
D. B.
Newell
, and
B. N.
Taylor
, The 2018 CODATA recommended values of the fundamental physical constants (Web Version 8.1). Database developed by J. Baker, M. Douma, and S. Kotochigova,
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2020
, available at http://physics.nist.gov/constants.
62.
I. H.
Bell
and
U. K.
Deiters
,
AIChE J.
64
,
2745
2757
(
2018
).
63.
T.
Neumann
,
M.
Thol
,
I. H.
Bell
,
E. W.
Lemmon
, and
R
Span
,
Fluid Phase Equilib.
511
,
112496
(
2020
).

Supplementary Material

You do not currently have access to this content.