The databases of alkaline and alkaline earth sulfate solubilities in water at various temperatures were created using experimental data from the publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed minerals have been calculated at various temperatures and represented by polynomial expressions.
9. References
1.
Amjad
, Z.
, “Calcium sulfate dihydrate (gypsum) scale formation on heat exchanger surfaces: The influence of scale inhibitors
,” J. Colloid Interface Sci.
123
, 523
–536
(1988
).2.
Archibald
, E. H.
and Gale
, W. A.
, “The system magnesium sulfate-sodium sulphate-water and a method for the separation of salts
,” J. Am. Chem. Soc.
46
, 1760
–1771
(1924
).3.
Arnórsson
, S.
, “Deposition of calcium carbonate minerals from geothermal waters—Theoretical considerations
,” Geothermics
18
, 33
–39
(1989
).4.
Ataev
, Kh.
, Valyashko
, V. M.
, Kravchuck
, K. G.
, Urusova
, M. A.
, and Dzhumamuradov
, B. D.
, “Solubility of K2SO4 in aqueous solutions and in molten KNO3 at 100-530 °C and vapour pressure
,” Zh. Neorg. Khim.
39
, 523
–528
(1994
).5.
Atkinson
, G.
, Raju
, K.
, and Howell
, R. D.
, “The thermodynamics of scale prediction
,” in SPE International Symposium on Oilfield Chemistry, 20-22 February, Anaheim, California
, Society of Petroleum Engineers Paper No. 21021 (Society of Petroleum Engineers
, 1991
), pp. 209
–215
.6.
Azimi
, G.
, Papangelakis
, V. G.
, and Dutrizac
, J. E.
, “Modeling of calcium sulphate solubility in concentrated multi-component sulphate solutions
,” Fluid Phase Equilib.
260
, 300
–315
(2007
).7.
Balarew
, Chr.
, “Calculation of the free Gibbs energy of phase transitions using solubility data. 1. The system Na2SO4–Na2SeO4–H2O at 15 °C: Stable and metastable equilibria
,” Pure Appl. Chem.
74
, 1793
–1800
(2002
).8.
Balarew
, Chr.
, Tepavitcharova
, S.
, Rabadjieva
, D.
, and Voigt
, W.
, “Solubility and crystallization in the system MgCl2−MgSO4−H2O at 50 and 75 °C
,” J. Solution Chem.
30
, 815
–823
(2001
).9.
Balarew
, D.
, “Löslichkeit und korngrösse
,” Z. Anorg. Allg. Chem.
145
, 122
–126
(1925
).10.
Benrath
, A.
, “Über die löslichkeit von salzen und salzgemischen in wasser bei temperaturen oberhalb von 100°. III
,” Z. Anorg. Allg. Chem.
247
, 147
–160
(1941
).11.
Bergman
, A. G.
and Luzhnaya
, N. P.
, Physico-Chemical Principles of Studying and Using of Chloride-Sulfate Salt Deposits
(Akademii Nauk SSSR
, Moscow
, 1951
).12.
Bergman
, A. G.
and Shelokhovich
, M. L.
, “Sulfate nitrophoska. 1. Polytherm of the ternary system H2O–K2SO4–(NH4)2SO4
,” Zh. Prikl. Khim
15
, 187
–193
(1942
).13.
Bernstein
, R. E.
, Byrne
, R. H.
, Betzer
, P. R.
, and Gerco
, A. M.
, “Morphologies and transformations of celestite in seawater: The role of acantharians in strontium and barium geochemistry
,” Geochim. Cosmochim. Acta
56
, 3273
–3279
(1992
).14.
Blount
, C. W.
, “Barite solubilities and thermodynamic quantities up to 300 °C and 1400 bars
,” Am. Mineral.
62
, 942
–957
(1977
).15.
Blount
, C. W.
and Dickson
, F. W.
, “Gypsum-anhydrite equilibrium in systems CaSO4–H2O and CaSO4–NaCl–H2O
,” Am. Mineral.
58
, 323
–331
(1973
).16.
Bock
, E.
, “On the solubility of anhydrous calcium sulfate and of gypsum in concentrated solutions of sodium chloride at 25, 30, 40 and 50 °C
,” Can. J. Chem.
39
, 1746
–1751
(1961
).17.
Boerlage
, S. F. E.
, Kennedy
, M. D.
, Bremere
, I.
, Witkamp
, G. J.
, Van der Hoek
, J. P.
, and Schippers
, J. C.
, “The scaling potential of barium sulphate in reverse osmosis systems
,” J. Membr. Sci.
197
, 251
–268
(2002
).18.
Booth
, H. S.
and Bidwell
, R. M.
, “Solubilities of salts in water at high temperatures
,” J. Am. Chem. Soc.
72
, 2567
–2575
(1950
).19.
Brobst
, D. A.
, Barite: World Production, Reserves, and Future Prospects
, Volume 1321 of Geological Survey Bulletin/United States Geological Survey (Government Printing Office
, Washington, DC
, 1970
).20.
Campbell
, A. N.
and Cook
, E. J. R.
, “A study of precipitation from supersaturated solutions of strontium sulfate
,” J. Am. Chem. Soc.
57
, 387
–390
(1935
).21.
Campbell
, J. R.
and Nancollas
, G. H.
, “The crystallization and dissolution of strontium sulphate in aqueous solution
,” J. Phys. Chem.
73
, 1735
–1740
(1969
).22.
Carpenter
, C. D.
and Jette
, E. R.
, “The vapor pressures of certain hydrated metal sulfates
,” J. Am. Chem. Soc.
45
, 578
–590
(1923
).23.
Christov
, C.
, “Thermodynamic study of the KCl–K2SO4–K2Cr2O7–H2O system at temperature 298.15 K
,” Calphad
22
, 449
–457
(1998
).24.
Christov
, C.
, “Study of (m1KCl + m2MeCl2) (aq) and (m1K2SO4 + m2MeSO4) (aq) where m denotes molality and Me denotes Cu, or Ni at the temperature 298.15 K
,” J. Chem. Thermodyn.
31
, 71
–83
(1999
).25.
Christov
, C.
, “Thermodynamic study of the Na–Cu–Cl–SO4–H2O system at the temperature 298.15 K
,” J. Chem. Thermodyn.
32
, 285
–295
(2000
).26.
Christov
, C.
, “Thermodynamic study of the NaCl–Na2SO4–Na2Cr2O7–H2O system at temperature 298.15 K
,” Calphad
25
, 11
–17
(2001
).27.
Christov
, C.
, “Thermodynamic study of quaternary systems with participation of ammonium and sodium alums and chromium alums
,” Calphad
26
, 341
–352
(2002
).28.
Christov
, C.
, “Temperature variable chemical model of bromide–sulfate solution interaction parameters and solid–liquid equilibria in the Na–K–Ca–Br–SO4–H2O system
,” Calphad
36
, 71
–81
(2012
).29.
Christov
, C.
, Petrenko
, S.
, Balarew
, C.
, and Valyashko
, V.
, “Calculation of the Gibbs energy of mixing in crystals using Pitzer’s model
,” J. Solution Chem.
23
, 795
–812
(1994
).30.
Church
, T. M.
and Wolgemuth
, K.
, “Marine barite saturation
,” Earth Planet. Sci. Lett.
15
, 35
–44
(1972
).31.
Corti
, H. R.
and Fernandez-Prini
, R.
, “Thermodynamics of solution of gypsum and anhydrite in water over a wide temperature range
,” Can. J. Chem.
62
, 484
–488
(1983
).32.
Cruft
, E. F.
and Chao
, P. C.
, “Nucleation kinetics of the gypsum-anhydrite system
,” in 3rd Symposium on Salt 1969
(Northern Ohio Geological Society
, 1970
), Vol. 1, pp. 109
–l18
.33.
Culberson
, C. H.
, Latham
, G.
, and Bates
, R. G.
, “Solubilities and activity coefficients of calcium and strontium sulphate in synthetic sea water at 0 °C and 25 °C
,” J. Phys. Chem.
82
, 2693
–2699
(1978
).34.
35.
d’Ans
, J.
and Freund
, H. E.
, “Das system H2O–H2SO4–MgSO4
,” Kali Steinsalz
3
, 31
–33
(1960
).36.
Dai
, Z.
, Kan
, A. T.
, Shi
, W.
, Zhang
, N.
, Zhang
, F.
, Yan
, F.
, Bhandari
, N.
, Zhang
, Z.
, Liu
, Y.
, Ruan
, G.
, and Tomson
, M. B.
, “Solubility measurements and predictions of gypsum, anhydrite, and calcite over wide ranges of temperature, pressure, and ionic strength with mixed electrolytes
,” Rock Mech. Rock Eng.
50
, 327
–339
(2017
).37.
Davis
, J. W.
and Collins
, A. G.
, “Solubility of barium and strontium sulfates in strong electrolyte solutions
,” Environ. Sci. Technol.
5
, 1039
–1043
(1971
).38.
Denecker
, M.
, Hébert
, R.
, Bourgès
, A.
, Menendez
, B.
, and Doehne
, E.
, “Mirabilite and heptahydrate characterization from infrared microscopy and thermal data
,” in 12th International Congress on the Deterioration and Conservation of Stone
(Columbia University
, New York
, 2012
).39.
Derluyn
, H.
, Saidov
, T. A.
, Espinosa-Marzal
, R. M.
, Pel
, L.
, and Scherer
, G. W.
, “Sodium sulfate heptahydrate I: The growth of single crystals
,” J. Cryst. Growth
329
, 44
–51
(2011
).40.
Dickinson
, H. C.
and Mueller
, E. F.
, “The transition temperature of sodium sulphate
,” J. Am. Chem. Soc.
29
, 1381
–1388
(1907
).41.
Duffie
, J. A.
and Beckman
, W. A.
, Solar Engineering of Thermal Processes
, 2nd ed. (Wiley
, New York
, 1991
).42.
Dyer
, S. J.
and Graham
, G. M.
, “The effect of temperature and pressure on oilfield scale formation
,” J. Pet. Sci. Eng.
35
, 95
–107
(2002
).43.
Dymond
, J.
, “Geochemistry of nazca plate surface sediments: An evaluation of hydrothermal, biogenic, detrital and hydrogenous sources
,” Geol. Soc. Am., Mem.
154
, 133
–174
(1981
).44.
Eddy
, R. D.
and Menzies
, A. W. C.
, “The solubilities of certain inorganic compounds in ordinary water and in deuterium water
,” J. Phys. Chem.
44
, 207
–235
(1940
).45.
Enüstün
, B. V.
and Turkevich
, J.
, “Solubility of fine particles of strontium sulfate
,” J. Am. Chem. Soc.
82
, 4502
–4509
(1960
).46.
Eysseltova
, J.
and Bouaziz
, R.
, “IUPAC-NIST solubility data series. 93. Potassium sulfate in water
,” J. Phys. Chem. Ref. Data
41
, 013103
(2012
).47.
Falkner
, K. K.
, Klinkhammer
, G. P.
, Bowers
, T. S.
, Todd
, J. F.
, Lewis
, B. L.
, Landing
, W. M.
, and Edmond
, J. M.
, “The behavior of barium in anoxic marine waters
,” Geochim. Cosmochim. Acta
57
, 537
–554
(1993
).48.
Farooqi
, M. I.
, Mahmood
, R.
, and Bashir
, N.
, “A critical review on the solubility of barium sulfate
,” J. Chem. Soc. Pak.
10
, 19
–27
(1988
).49.
Felmy
, A. R.
, Rai
, D.
, and Amonette
, J. E.
, “The solubility of barite and celestite in sodium sulfate: Evaluation of thermodynamic data
,” J. Solution Chem.
19
, 175
–185
(1990
).50.
Ferguson
, R. J.
and Ferguson
, B. R.
, “The chemistry of strontium and barium scales
,” in Association of Water Technologies
, Reno, NV
, 20–23 October 2010
, pp. 1
–17
.51.
Filippov
, V. K.
, Charykov
, N. A.
, and Rumyantzev
, A. V.
, “The application of Pitzer’s method to salt-aqueous system with complex formation in solution
,” Dokl. Akad. Nauk SSSR
296
, 665
–668
(1987
).52.
Ford
, G.
, Niblett
, C.
, and Walker
, L.
, The Future for Ocean Technology
(Frances Pinter
, Wolfeboro, NH, USA
, 1987
).53.
Freyer
, D.
and Voigt
, W.
, “Crystallization and phase stability of CaSO4 and CaSO4-based salts
,” Monatsh. Chem.
134
, 693
–719
(2003
).54.
Gallo
, G.
, “Equilibrium of strontium sulfate and water at various temperatures
,” Ann. Chim. Appl.
25
, 628
–631
(1935
).55.
Gates
, G. L.
and Caraway
, W. H.
, Oil Well Scale Formation in Water Flood Operations Using Ocean Brines
(U.S. Bureau of Mines, Report of Investigation
, Wilmington, California
, 1965
), Vol. 6658, 28
pp.56.
Genceli
, F. E.
, Lutz
, M.
, Spek
, A. L.
, and Witkamp
, G.-J.
, “Crystallization and characterization of a new magnesium sulfate hydrate MgSO4 · 11H2O
,” Cryst. Growth Des.
7
, 2460
–2466
(2007
).57.
Gingele
, F.
and Dahmke
, A.
, “Discrete barite particles and barium as tracers of paleoproductivity in south atlantic sediments
,” Paleoceanography
9
, 151
–168
(1994
).58.
Greenberg
, J. P.
and Moller
, N.
, “The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–K–Ca–Cl–SO4–H2O system to high concentration from 0 to 250 °C
,” Geochim. Cosmochim. Acta
53
, 2503
–2518
(1989
).59.
Grigor'ev
, A. P.
and Shamaev
, P. P.
, “Determination of gypsum-anhydrite equilibrium temperature
,” Izv. Sibir. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk
104
(1976
).60.
Hall
, C.
and Hamilton
, A.
, “The heptahydrate of sodium sulfate: Does it have a role in terrestrial and planetary geochemistry?
,” Icarus
198
, 277
–279
(2008
).61.
Hall
, R. E.
, Robb
, J. A.
, and Coleman
, C. E.
, “The solubility of calcium sulfate at boiler-water temperatures
,” J. Am. Chem. Soc.
48
, 927
–938
(1926
).62.
Hamilton
, A.
and Hall
, C.
, “Sodium sulfate heptahydrate: A synchrotron energy dispersive diffraction study of an elusive metastable hydrated salt
,” J. Anal. Atom. Spectrom.
23
, 840
–844
(2008
).63.
Hanson
, C.
and Murthy
, S. L. N.
, “The ocean as a commercial source of minerals
,” Chem. Eng.
295
–298
(1972
).64.
Hardie
, L. A.
, “The gypsum-anhydrite equilibrium at one atmosphere
,” Am. Mineral.
52
, 171
–200
(1967
).65.
Hartley
, H.
, Jones
, B. M.
, and Hutchinson
, G. A.
, “The spontaneous crystallization of sodium sulphate solutions
,” J. Chem. Soc. Trans.
93
, 825
–833
(1908
).66.
Harvey
, A. H.
and Salomon
, M.
, “Editorial: IUPAC-NIST solubility data series
,” J. Phys. Chem. Ref. Data
39
, 020401
(2010
).67.
Harvie
, C. E.
and Weare
, J. H.
, “The prediction of mineral solubilities in natural waters, the Na–K–Mg–Ca–Cl–SO4–H2O system from zero to high concentration at 25°C
,” Geochim. Cosmochim. Acta
44
, 981
–997
(1980
).68.
Harvie
, C. E.
, Weare
, J. H.
, Hardie
, L. A.
, and Eugster
, H. P.
, “Evaporation of seawater, calculated mineral sequences
,” Science
208
, 498
–500
(1980
).69.
Harvie
, C. E.
, Eugster
, H. P.
, and Weare
, J. H.
, “Mineral equilibria in the six component seawater system Na–K–Mg–Ca–Cl–SO4–H2O system at 25 °C. II. Compositions of the saturated solutions
,” Geochim. Cosmochim. Acta
46
, 1603
–1618
(1982
).70.
Harvie
, C. E.
, Moller
, N.
, and Weare
, J. H.
, “The prediction of mineral solubilities in natural waters, the Na–K–Mg–Ca–H–Cl–SO4-OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C
,” Geochim. Cosmochim. Acta
48
, 723
–751
(1984
).71.
Helgeson
, H. C.
, “Thermodynamics of hydrothermal systems at elevated temperatures and pressures
,” Am. J. Sci.
267
, 729
–804
(1969
).72.
Herovsky
, J.
and Berezicky
, S.
, “The deposition of radium and other alkaline earth metals at the dropping mercury cathode
,” Collect. Czech. Chem. Commun.
1
, 19
–46
(1929
).73.
Hill
, A. E.
, “The transition temperature of gypsum to anhydrite
,” J. Am. Chem. Soc.
59
, 2242
–2244
(1937
).74.
Holmes
, H. F.
and Mesmer
, R. E.
, “Isopiestic studies of aqueous solutions at elevated temperatures. VIII. The alkali-metal sulfates
,” J. Chem. Thermodyn.
18
, 263
–275
(1986
).75.
Hulett
, G. A.
and Allen
, L. E.
, “The solubility of gypsum
,” J. Am. Chem. Soc.
24
, 667
–679
(1902
).76.
Innorta
, G. E.
, Rabbi
, E.
, and Tomadin
, L.
, “The gypsum-anhydrite equilibrium by solubility measurements
,” Geochim. Cosmochim. Acta
44
, 1931
–1936
(1980
).77.
Jamialahmadi
, M.
and Muller-Steinhagen
, H.
, “Mechanisms of scale deposition and scale removal in porous media
,” Int. J. Oil, Gas Coal Technol.
1
, 81
–108
(2008
).78.
Kanno
, M.
, “Design and cost studies on the extraction of uranium from seawater
,” Sep. Sci. Technol.
16
, 999
–1018
(1981
).79.
Kargel
, J. S.
, Furfaro
, R.
, Prieto-Ballesteros
, O.
, Rodriguez
, J. A. P.
, Montgomery
, D. R.
, Gillespie
, A. R.
, Marion
, G. M.
, and Wood
, S. E.
, “Martian hydrogeology sustained by thermally insulating gas and salt hydrates
,” Geology
35
, 975
–978
(2007
).80.
Kelly
, K. K.
, Southard
, J. C.
, and Anderson
, C. T.
, Thermodynamic Properties of Gypsum and Its Dehydration Products
, U.S. Bureau of Mines Technical Paper 625 (U. S. Government Printing Office
, Washington, DC
, 1941
).81.
Khodakovsky
, I. L.
, Mishin
, I. V.
, and Zhogina
, V. V.
, “About temperature dependence of solubility constants and some limits on the chemical composition of hydrothermal solutions
,” Geokhimiya
7
, 861
–866
(1966
).82.
Kim
, H.-T.
and Frederick
, Jr., W. J.
, “Evaluation of pitzer ion interaction parameters of aqueous electrolytes at 25 °C. 1. Single salt parameters
,” J. Chem. Eng. Data
33
, 177
–184
(1988
).83.
Knacke
, O.
and Gans
, W.
, “The thermodynamics of the system CaSO4–H2O
,” Z. Phys. Chem.
104
, 41
–48
(1977
).84.
Kontrec
, J.
, Kralj
, D.
, and Breèeviæ
, L.
, “Transformation of anhydrous calcium sulphate into calcium sulphate dihydrate in aqueous solutions
,” J. Cryst. Growth
240
, 203
–211
(2002
).85.
Kornicker
, W. A.
, Presta
, P. A.
, Paige
, C. R.
, Johnson
, D. M.
, Hileman
, Jr., O. E.
, and Snodgrass
, W. J.
, “The aqueous dissolution kinetics of the barium/lead solid solution series at 25 °C and 60 °C
,” Geochim. Cosmochim. Acta
55
, 3531
–3541
(1991
).86.
Krumgalz
, B. S.
, “Ion interaction approach to geochemical aspects of the Dead Sea
,” in The Dead Sea. The Lake and Its Setting
, edited by Niemi
, T. M.
, Ben-Avraham
, Z.
, and Gat
, J. R.
(Oxford University Press
, New York, Oxford
, 1997
), pp. 145
–160
.87.
Krumgalz
, B. S.
, “Application of the pitzer ion interaction model to natural hypersaline brines
,” J. Mol. Liq.
91
, 3
–19
(2001
).88.
Krumgalz
, B. S.
, “Temperatures dependence of mineral solubility in water. Part 1. Alkaline and alkaline earth chlorides
,” J. Phys. Chem. Ref. Data
46
, 043101
(2017
).89.
Krumgalz
, B. S.
, “Temperatures dependence of mineral solubility in water. Part 2. Alkaline and alkaline earth bromides
,” J. Phys. Chem. Ref. Data
47
, 013101
(2018
).90.
Krumgalz
, B. S.
and Millero
, F. J.
, “Physico-chemical study of the Dead Sea waters. I. Activity coefficients of major ions in Dead Sea water
,” Mar. Chem.
11
, 209
–222
(1982
).91.
Krumgalz
, B. S.
and Millero
, F. J.
, “Physico-chemical study of the Dead Sea waters. III. On gypsum saturation in Dead Sea waters and their mixtures with mediterranean sea water
,” Mar. Chem.
13
, 127
–139
(1983
).92.
Krumgalz
, B. S.
and Millero
, F. J.
, “Halite solubility in Dead Sea waters
,” Mar. Chem.
27
, 219
–233
(1989
).93.
Krumgalz
, B. S.
, Starinsky
, A.
, and Pitzer
, K. S.
, “Ion interaction approach: Pressure effect on the solubility of some minerals in submarine brines and seawater
,” J. Solution Chem.
28
, 667
–692
(1999
).94.
Krumgalz
, B. S.
, Hecht
, A.
, Starinsky
, A.
, and Katz
, A.
, “Thermodynamic constraints on Dead Sea evaporation, can the Dead Sea dry up?
,” Chem. Geol.
165
, 1
–11
(2000
).95.
Krumgalz
, B. S.
, Magdal
, E.
, and Starinsky
, A.
, “The evolution of a chloride sedimentary sequence–simulated evaporation of the Dead Sea lake
,” Isr. J. Earth Sci.
51
, 253
–267
(2002
).96.
Kurilenko
, V. V.
, Filippov
, V. K.
, Charykov
, N. A.
, and Shwarts
, A. A.
, “The application of Pitzer’s method for hydrogeochemical modeling of the processes of development of modern evaporative basins
,” Dokl. Akad. Nauk SSSR
311
, 193
–196
(1990
).97.
Langmuir
, D.
and Melchior
, D.
, “The geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from Palo Duro Basin, Texas
,” Geochim. Cosmochim. Acta
49
, 2423
–2432
(1985
).98.
99.
Lee
, S.
, Cho
, J.
, and Elimelech
, M.
, “Influence of colloidal fouling and feed water recovery on salt rejection of RO and NF membranes
,” Desalination
160
, 1
–12
(2004
).100.
Lemarchands
, M. M.
, “Séparation quantitative du barium et du calcium
,” Comput. Rend. Acad. Sci. Paris
187
, 601
–603
(1928
).101.
Li
, D.
, Huang
, B.
, Meng
, L.
, and Xu
, Q.
, “Solubility measurement and solid-liquid equilibrium model for the ternary system MgBr2 + MgSO4 + H2O at 288.15 K
,” Braz. J. Chem. Eng.
31
, 561
–570
(2014
).102.
Loewel
, H.
, “Observations sur la sursaturation des dissolutions salines
,” Ann. Chim. Phys.
29
, 62
–127
(1850
).103.
Lu
, C. H.
and Fabuss
, B. M.
, “Calcium sulfate scaling in saline water distillation
,” Ind. Eng. Chem. Process Des. Dev.
7
, 206
–212
(1968
).104.
Luk'yanova
, E. I.
, Sokol
, V. I.
, and Sokolova
, G. N.
, “The solubility in quaternary reciprocal system (2KCl + MgSO4 ↔ K2SO4 + MgCl2) + H2O at 75 °C
,” Zh. Neorg. Khim
1
, 298
–307
(1956
).105.
Mager
, H.
and Lieser
, K. H.
, “Rekristallisation und alterung von strontiumsulfat, II. Rekristallisation und alterung nach der fällung aus verdünnten lösungen
,” Z. Phys. Chem.
81
, 81
–88
(1972
).106.
Magin
, R. L.
, Mangum
, B. W.
, Statler
, J. A.
, and Thornton
, D. D.
, “Transition temperatures of the hydrates of Na2SO4, Na2HPO4 and KF as fixed points in biomedical thermometry
,” J. Res. Natl. Bur. Stand.
86
, 181
–192
(1981
).107.
Makarov
, S. Z.
and Blidin
, V. P.
, “Polytherm of the quaternary system Na2CO3–Na2SO4–NaCl–H2O and solid solutions of berkeite type
,” Izv. Akad. Nauk SSSR, Ser. khim.
865
–892
(1938
).108.
Malinin
, S. D.
, Uchameyschvili
, N.Ye.
, and Khitarov
, N. I.
, “Application of the theory of strong electrolytes to the solubility of barite in aqueous metal chlorides under hydrothermal conditions
,” Geokhimiya
927
–938
(1969
).109.
Mangold
, N.
, Gendrin
, A.
, Gondet
, B.
, LeMouelic
, S.
, Quantin
, C.
, Ansan
, V.
, Bibring
, J.-P.
, Langevin
, Y.
, Masson
, P.
, and Neukum
, G.
, “Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars
,” Icarus
194
, 519
–543
(2008
).110.
Marion
, G. M.
and Farren
, R. E.
, “Mineral solubilities in the Na–K–Mg–Ca–Cl–SO4–H2O system: A re-evaluation of the sulfate chemistry in the Spencer-Moller-Weare model
,” Geochim. Cosmochim. Acta
63
, 1305
–1318
(1999
).111.
Marliacy
, P.
, Hubert
, N.
, Schuffenecker
, L.
, and Solimando
, R.
, “Use of Pitzer’s model to calculate thermodynamic properties of aqueous electrolyte solutions of Na2SO4 + NaCl between 273.15 and 373.15 K
,” Fluid Phase Equilib.
148
, 95
–106
(1998
).112.
Marliacy
, P.
, Solimando
, R.
, Bouroukba
, M.
, and Schuffenecker
, L.
, “Thermodynamics of crystallization of sodium sulfate decahydrate in H2O–NaCl–Na2SO4, application to Na2SO4 · 10H2O-based latent heat storage materials
,” Thermochim. Acta
344
, 85
–94
(2000
).113.
Marshall
, W. L.
and Slusher
, R.
, “Thermodynamics of calcium sulfate dihydrate in aqueous sodium chloride solutions, 0–110°
,” J. Phys. Chem.
70
, 4015
–4027
(1966
).114.
Marshall
, W. L.
and Slusher
, R.
, “Aqueous systems at high temperature. Solubility to 200 °C of calcium sulfate and its hydrates in sea water and saline water concentrates, and temperature-concentration limits
,” J. Chem. Eng. Data
13
, 83
–93
(1968
).115.
Marshall
, W. L.
, Slusher
, R.
, and Jones
, E. V.
, “Aqueous systems at high temperature. XIV. Solubility and thermodynamic relationships for CaSO4 in NaCl–H2O solutions from 40 °C to 200 °C, 0 to 4 molal NaCl
,” J. Chem. Eng. Data
9
, 187
–191
(1964
).116.
Massie
, K. S.
, “Extraction of inorganic materials from sea water in North-West Europe
,” in The North-West European Shelf Seas: The Sea Bed and the Sea in Motion. II. Physical and Chemical Oceanography, and Physical Resources
, Elsevier Oceanography Series, edited by Banner
, F. T.
, Collins
, M. B.
, and Massie
, K. S.
(Elsevier
, Amsterdam
, 1980
), Vol. 24B, Chap. 19, pp. 569
–572
.117.
McIlhenny
, W.F.
, “Extraction of economic inorganic materials from sea water
,” in Chemical Oceanography
, 2nd ed., edited by Riley
, J. P.
and Skirrow
, G.
(Academic Press
, London, New York
, 1975
), Vol. 4, pp. 155
–218
.118.
Melcher
, A. C.
, “The solubility of silver chloride, barium sulfate, and calcium sulfate at high temperatures
,” J. Am. Chem. Soc.
32
, 50
–66
(1910
).119.
Meng
, L. Z.
, Deng
, T. L.
, Guo
, Y. F.
, Li
, D.
, and Yang
, L.
, “Measurement and thermodynamic model study on solid + liquid equilibria and physicochemical properties of the ternary system MgBr2 + MgSO4 + H2O at 323.15 K
,” Fluid Phase Equilib.
342
, 88
–94
(2013
).120.
Møller
, N.
, “The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–Ca–Cl–SO4–H2O system, to high temperature and concentration
,” Geochim. Cosmochim. Acta
52
, 821
–837
(1988
).121.
Monnin
, C.
, “A thermodynamic model for the solubility of barite and celestite in electrolyte solutions and seawater to 200 °C and to 1 kbar
,” Chem. Geol.
153
, 187
–209
(1999
).122.
Monnin
, C.
and Galinier
, C.
, “The solubility of celestite and barite in electrolyte solutions and natural waters at 25 °C: A thermodynamic study
,” Chem. Geol.
71
, 283
–296
(1988
).123.
Moreno
, E. C.
and Osborn
, G.
, “Solubility of gypsum and dicalcium phosphate dihydrate in the system CaO–P2O5–SO3–H2O and in soils
,” Soil Sci. Soc. Am. Proc.
27
, 614
–619
(1963
).124.
Nakayama
, F. S.
and Rasnik
, B. A.
, “Calcium electrode method for measuring dissociation and solubility of calcium sulfate dihydrate
,” Anal. Chem.
39
, 1022
–1023
(1967
).125.
Neuman
, E. W.
, “Solubility relations of barium sulfate in aqueous solutions of strong electrolytes
,” J. Am. Chem. Soc.
55
, 879
–884
(1933
).126.
Nordstrom
, D. K.
and Munoz
, J. L.
, Geochemical Thermodynamics
, 2nd ed. (Blackwell Scientific Publications
, Boston, USA
, 1994
).127.
Ostroff
, A. G.
, “Conversion of gypsum to anhydrite in aqueous salt solutions
,” Geochim. Cosmochim. Acta
28
, 1363
–1372
(1964
).128.
Oswald
, I. D. H.
, Hamilton
, A.
, Hall
, Ch.
, Marshall
, W. G.
, Prior
, T. J.
, and Pulham
, C.R.
, “In situ characterization of elusive salt hydrates—The crystal structures of the heptahydrate and octahydrate of sodium sulfate
,” J. Am. Chem. Soc.
130
, 17795
–17800
(2008
).129.
Pabalan
, R. T.
and Pitzer
, K. S.
, “Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na–K–Mg–Cl–SO4–OH–H2O
,” Geochim. Cosmochim. Acta
51
, 2429
–2443
(1987
).130.
Paige
, C. R.
, Kornicker
, W. A.
, Hileman
, Jr., O. E.
, and Snodgrass
, W. J.
, “Solution equilibria for uranium ore processing: The BaSO4–H2SO4–H2O system and the RaSO4–H2SO4–H2O system
,” Geochim. Cosmochim. Acta
62
, 15
–23
(1998
).131.
Partridge
, E. P.
and White
, A. H.
, “The solubility of calcium sulfate from 0 to 200 °C
,” J. Am. Chem. Soc.
51
, 360
–370
(1929
).132.
Pérez-Villaseñor
, F.
and Iglesias-Silva
, G. A.
, “Prediction of osmotic and activity coefficients using a modified Pitzer equation for multicomponent strong electrolyte systems at 298 K
,” Ind. Eng. Chem. Res.
42
, 1087
–1092
(2003
).133.
Phutela
, R. C.
and Pitzer
, K. S.
, “Heat capacity and other thermodynamic properties of aqueous magnesium sulfate to 473 K
,” J. Phys. Chem.
90
, 895
–901
(1986
).134.
Physikalish Chemische Tabellen
, edited by Landolt
, H.
and Bornstein
, R.
(Verlag von Julius Springer
, Berlin
, 1894
).135.
Pitzer
, K. S.
, “Thermodynamics of electrolytes. I. Theoretical basis and general equations
,” J. Phys. Chem.
77
, 268
–277
(1973
).136.
Pitzer
, K. S.
, “Theory, ion interaction approach
,” in Activity Coefficients in Electrolyte Solutions
, edited by Pytkowicz
, R. M.
(CRC Press
, Boca Raton, FL
, 1979
), pp. 157
–208
.137.
Pitzer
, K. S.
, “Theoretical considerations of solubility with emphasis on mixed aqueous electrolytes
,” Pure Appl. Chem.
58
, 1599
–1610
(1986
).138.
Pitzer
, K.S.
, “Ion interaction approach, theory and data correlation
,” in Activity Coefficients in Electrolyte Solutions
, 2nd ed., edited by Pitzer
, K. S.
(CRC Press
, Boca Raton, FL
, 1991
), pp. 75
–153
.139.
Pitzer
, K. S.
and Mayorga
, G.
, “Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent
,” J. Phys. Chem.
77
, 2300
–2308
(1973
).140.
Pitzer
, K. S.
and Mayorga
, G.
, “Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2-2 electrolytes
,” J. Solution Chem.
3
, 539
–546
(1974
).141.
Plummer
, L. N.
, Parkhurst
, D. L.
, Fleming
, G. W.
, and Dunkle
, S. A.
, “A computer program incorporating Pitzer’s equations for calculation of geochemical reactions in brines
,” Report No. 88-4153, U.S. Geological Survey, Water Resources Investigation
, Reston, Virginia
, 1988
, 310
pp.142.
143.
Potter
, II, R. W.
and Clynne
, M. A.
, “Solubility of highly soluble salts in aqueous media. Part 1. NaCl, KCl, CaCl2, Na2SO4, and K2SO4 solubilities to 100 °C
,” J. Res. U.S. Geol. Surv.
6
, 701
–705
(1978
).144.
Power
, W. H.
, Fabuss
, B. M.
, and Satterfield
, C. N.
, “Transient solute concentrations and phase changes of calcium sulfate in aqueous sodium chloride
,” J. Chem. Eng. Data
11
, 149
–154
(1966
).145.
Raju
, K.
and Atkinson
, G.
, “Thermodynamics of ‘scale’ mineral solubilities. 1. BaSO4(s) in H2O and aqueous NaCl
,” J. Chem. Eng. Data
33
, 490
–495
(1988
).146.
Raju
, K.
and Atkinson
, G.
, “Thermodynamics of ‘scale’ mineral solubilities. 2. SrSO4(s) in aqueous NaCl
,” J. Chem. Eng. Data
34
, 361
–364
(1989
).147.
Raju
, K. U. G.
and Atkinson
, G.
, “The thermodynamics of ‘scale’ mineral solubilities. 3. Calcium sulfate in aqueous NaCl
,” J. Chem. Eng. Data
35
, 361
–367
(1990
).148.
Ramette
, R. W.
and Anderson
, O.
, “On the averred effects of radioisotopic tracers on solubility
,” J. Inorg. Nucl. Chem.
25
, 763
–770
(1963
).149.
Rard
, J. A.
and Miller
, D. G.
, “Isopiestic determination of the osmotic coefficients of aqueous Na2SO4, MgSO4, and Na2SO4–MgSO4 at 25 °C
,” J. Chem. Eng. Data
26
, 33
–38
(1981
).150.
Ravich
, M. I.
and Borovaya
, F. E.
, “Phase equilibrium in system potassium sulfate-water at high temperatures and pressure
,” Zh. Neorg. Khim.
13
, 1418
–1425
(1968
).151.
Reardon
, E. J.
and Armstrong
, D. K.
, “Celestite (SrSO4(s)) solubility in water, seawater and NaCl solution
,” Geochim. Cosmochim. Acta
51
, 63
–72
(1987
).152.
Reference Book of Experimental Data of the Solubility of Multicomponent Aqueous-Salt Systems
, 2nd ed., edited by Pel'sh
, A. D.
(Khimiya
, Leningrad
, 1973
).153.
Richards
, T. W.
and Churchill
, J. B.
, “The use of the transition temperature of complex systems as fixed points in thermometry
,” Proc. Am. Acad. Arts Sci.
34
, 277
–280
(1899
).154.
Richards
, T. W.
and Yngve
, V.
, “The transition temperatures of strontium chloride and strontium sulfate as fixed points in thermometry
,” J. Am. Chem. Soc.
40
, 89
–95
(1918
).155.
Robie
, R. A.
, Hemingway
, B. S.
, and Fisher
, J. R.
, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and Higher Temperatures
, U.S. Geological Survey Bulletin (US Government Printing Office
, Washington
, 1978
), Vol. 1452, 456
pp.156.
Robson
, H. L.
, “The system MgSO4–H2O from 68 to 240 °C
,” J. Am. Chem. Soc.
49
, 2772
–2783
(1927
).157.
Rogers
, P. S. Z.
, “Thermodynamics of geothermal fluids
,” Ph.D. dissertation (University of California
, Berkeley
, 1981
).158.
Rosseinsky
, D. R.
, “The solubilities of sparingly soluble salts in water. Part 5. The solubility of barium sulphate at 25 °C
,” Trans. Faraday Soc.
54
, 116
–118
(1958
).159.
Safari
, H.
, Gharagheizi
, F.
, Lemraski
, A. S.
, Jamialahmadi
, M.
, Mohammadi
, A. H.
, and Ebrahimi
, M.
, “Rigorous modeling of gypsum solubility in Na–Ca–Mg–Fe–Al–H–Cl–H2O system at elevated temperatures
,” Neural Comput. Appl.
25
, 955
–965
(2014
).160.
Sborgi
, U.
and Bianchi
, C.
, “Solubility, conductivity and X-ray analysis of calcium sulfate anhydrite and semihydrate
,” Gazz. Chim. Ital.
70
, 823
–835
(1940
).161.
Schultze
, L. E
and Bauer
, D. J.
, “Operation of a mineral recovery unit on brine from the Salton Sea known geothermal resource area
,” Technical Report BUMINES-RI-8680 (Bureau of Mines, Reno Research Center
, Reno, NV
, 1982
), 18
pp.162.
Seetharam
, B.
and Srinivasan
, D.
, “Recovery minerals from seawater
,” Chem. Eng. World
13
, 63
–65
(1978
).163.
Shul'gina
, M. P.
, Kharchuk
, O. S.
, and Yanat’eva
, O. K.
, “New solid phases in the system KCl–K2SO4–H2O
,” Izv. Sect. Fiz.-Khim. Anal. Akad. Nauk SSSR
26
, 198
–210
(1955
).164.
Silvester
, L. F.
and Pitzer
, K. S.
, “Thermodynamics of electrolytes. X. Enthalpy and the effect of temperature on the activity coefficients
,” J. Solution Chem.
7
, 327
–337
(1978
).165.
Simoes
, M. C.
, Hughes
, K. J.
, Ingham
, D. B.
, Ma
, L.
, and Pourkashanian
, M.
, “Estimation of the Pitzer parameters for 1-1, 2-1, 3-1, 4-1, and 2-2 single electrolytes at 25 °C
,” J. Chem. Eng. Data
61
, 2536
–2554
(2016
).166.
Sirbu
, F.
, Iulian
, O.
, Ion
, A. C.
, and Ion
, I.
, “Activity coefficients of electrolytes in the NaCl + Na2SO4 + H2O ternary system from potential difference measurements at (298.15, 303.15, and 308.15) K
,” J. Chem. Eng. Data
56
, 4935
–4943
(2011
).167.
Skinner
, B. J.
, Earth Resources
(Prentice-Hall, Inc.
, Englewood Cliffs, New Jersey
, 1989
).168.
Smith
, R. M.
and Martell
, A.E.
, Critical Stability Constants
, Volume 4 of Inorganic Complexes (Plenum Press
, New York, USA
, 1976
), 257
pp.169.
Solubilities, Inorganic and Metal-Organic Compounds. A Compilation of Solubility Data from the Periodical Literature
, edited by Linke
, W. F.
(American Chemical Society
, Washington, DC
, 1958
), Vol. I.170.
Solubilities, Inorganic and Metal-Organic Compounds. A Compilation of Solubility Data from the Periodical Literature
, A Revision and Continuation of the Compilation Originated by Seidell, A., 4th ed., edited by Linke
, W. F.
(American Chemical Society
, Washington, DC
, 1965
), Vol. II.171.
Spencer
, R. J.
, Møller
, N.
, and Weare
, J. H.
, “The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–K–Ca–Mg–SO4–H2O system at temperatures below 25 °C
,” Geochim. Cosmochim. Acta
54
, 575
–590
(1990
).172.
Spravochnik po Rastvorimosti Solevykh Sistem, Vols. I and II
, edited by Bukshtein
, V. M.
, Valyashko
, M. G.
, and Pel'sh
, A.D.
(Izd. Vses. Nauch.-Issled. Inst. Goz., Goskhimizdat.
, Moscow-Leningrad
, 1953
), 1270
pp.173.
Steiger
, M.
and Asmussen
, S.
, “Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4–H2O and the generation of stress
,” Geochim. Cosmochim. Acta
72
, 4291
–4306
(2008
).174.
Steiger
, M.
, Kiekbusch
, J.
, and Nicolai
, A.
, “An improved model incorporating Pitzer’s equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code
,” Constr. Build. Mater.
22
, 1841
–1850
(2008
).175.
Steiger
, M.
, Linnow
, K.
, Ehrhardt
, D.
, and Rohde
, M.
, “Decomposition reactions of magnesium sulfate hydrates and phase equilibria in the MgSO4–H2O and Na+–Mg2+–Cl−–SO42−–H2O systems with implications for Mars
,” Geochim. Cosmochim. Acta
75
, 3600
–3626
(2011
).176.
Strübel
, G.
, “Die hydrothermale löslichkeit von colestin im system SrSO4–NaCl–H2O
,” Neues Jahrb. Mineral. Monatsh.
5
, 99
–108
(1966
).177.
Strübel
, G.
, “Zur kenntnis und genetischen bedeutung des systems BaSO4–NaCl–H2O
,” Neues Jahrb. Mineral. Monatsh.
4
, 223
–234
(1967
).178.
Suresh
, B.
and Yokose
, K.
, “Sodium sulfate
,” in Chemical Economic Handbook
(SRI Consulting
, Zurich
, 2006
).179.
Tallmadge
, J. A.
, Butt
, J. B.
, and Solomon
, H. J.
, “Minerals from sea salt
,” Ind. Eng. Chem.
56
, 44
–65
(1964
).180.
Telkes
, M.
, “Nucleation of supersaturated inorganic salt solutions
,” Ind. Eng. Chem.
44
, 1308
–1310
(1952
).181.
Templeton
, C. C.
, “Solubility of barium sulfate in sodium chloride solutions from 25° to 95°C
,” J. Chem. Eng. Data
5
, 514
–516
(1960
).183.
Tilden
, W. A.
and Shenstone
, W. A.
, “On the Solubility of Salts in Water at High Temperatures
,” Phil. Trans. R. Soc. Lond. 172
, 23
–36
(1984
).184.
Trendafelov
, D.
, Christov
, C.
, Balarew
, C.
, and Karapetkova
, A.
, “Study of the conversion of CaSO4 to CaCO3 within the CaSO4 + Na2CO3 = CaCO3 + Na2SO4 four-component water-salt system
,” Collect. Czech. Chem. Commun.
60
, 2107
–2111
(1995
).185.
Uchameyshvili
, N. Y.
, Malinin
, S. D.
, and Khitarov
, N. I.
, “Solubility of barite in concentrated chloride solutions of some metals at elevated temperatures in relation to problems of genesis of barite deposits
,” Geochem. Int. USSR
3
, 951
–963
(1966
).186.
van't Hoff
, S. H.
, Armstrong
, E. F.
, Hinrichesen
, W.
, Weigert
, F.
, and Just
, G.
, “Gips und anhydrite
,” Z. Phys. Chem.
45
, 257
–306
(1903
).187.
Vener
, R. E.
and Thompson
, A. R.
, “Solubility and density isotherms for sodium sulfate-ethylene glycol-water
,” Ind. Eng. Chem.
41
, 2242
–2247
(1949
).188.
Vener
, R. E.
and Thompson
, A. R.
, “Solubility and density isotherms. The system sodium sulfate-ethyl alcohol-water
,” Ind. Eng. Chem.
42
, 171
–174
(1950
).189.
Voigt
, W.
, “Modellierung der löslichkeiten in multikomponent-salzlösungen
,” Freib. Forschh. A
853
, 5
–36
(1999
).190.
Voigt
, W.
, “What we know and still not know about oceanic salts
,” Pure Appl. Chem.
87
, 1099
–1126
(2015
).191.
Wagman
, D. D.
, Evans
, W. H.
, Parker
, V. B.
, Schumm
, R. H.
, Halow
, I.
, Bailey
, S. M.
, Churney
, K. L.
, and Nuttall
, R. L.
, “The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units
,” J. Phys. Chem. Ref. Data
11
(Suppl. 2
) (1982
).192.
Washburn
, E. R.
and Clem
, W. J.
, “The transition temperature of sodium sulfate heptahydrate
,” J. Am. Chem. Soc.
60
, 754
–757
(1938
).193.
Weston
, A.
, “The quaternary system potassium sulphate-magnesium sulphate-ammonium sulphate-water
,” J. Chem. Soc.
121-122
, 1223
–1237
(1922
).194.
Yeatts
, L. B.
and Marshall
, W. L.
, “Apparent invariance of activity coefficients of calcium sulfate at constant ionic strength and temperature in the system CaSO4–Na2SO4–NaNO3–H2O to the critical temperature of water; association equilibria
,” J. Phys. Chem.
73
, 81
–90
(1969
).195.
Yeatts
, L. B.
and Marshall
, W. L.
, “Solubility of calcium sulfate dihydrate and association equilibriums in several aqueous mixed electrolyte salt systems at 25°C
,” J. Chem. Eng. Data
17
, 163
–168
(1972
).196.
Ying
, R.
, Li
, D.
, Meng
, L.
, Deng
, T.
, and Guo
, Y.
, “Experimental and thermodynamic model study on solid and liquid equilibrium of ternary system MgBr2–MgSO4–H2O at 333.15 K
,” J. Chem. Eng. Data
61
, 2624
–2628
(2016
).197.
Yuan
, M.
, Prediction of Sulphate Scaling Tendency and Investigation of Barium and Strontium Sulphate Solid Solution Scale Formation
(Heriot-Watt University
, Edinburgh
, 1989
).198.
Zdanovskii
, A. B.
and Vlasov
, G. A.
, “Solubility of the various modifications of calcium sulfate in H2SO4 solutions at 25 °C
,” Zh. Neorg. Khim.
13
, 2747
–2753
(1968
).199.
Zen
, E.-A.
, “Solubility measurements in the system CaSO4–NaCl–H2O at 35, 50 and 70 °C and one atmosphere pressure
,” J. Petrol.
6
, 124
–164
(1965
).200.
Zhen-Wu
, B. Y.
, Dideriksen
, K.
, Belova
, D. A.
, Raahauge
, P. J.
, and Stipp
, S. L. S.
, “A comparison of standard thermodynamic properties and solubility data for barite, Ba2+(aq) and SO42−(aq)
,” Mineral. Mag.
78
, 1505
–1515
(2014
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.