The databases of alkaline and alkaline earth sulfate solubilities in water at various temperatures were created using experimental data from the publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed minerals have been calculated at various temperatures and represented by polynomial expressions.

1.
Amjad
,
Z.
, “
Calcium sulfate dihydrate (gypsum) scale formation on heat exchanger surfaces: The influence of scale inhibitors
,”
J. Colloid Interface Sci.
123
,
523
536
(
1988
).
2.
Archibald
,
E. H.
and
Gale
,
W. A.
, “
The system magnesium sulfate-sodium sulphate-water and a method for the separation of salts
,”
J. Am. Chem. Soc.
46
,
1760
1771
(
1924
).
3.
Arnórsson
,
S.
, “
Deposition of calcium carbonate minerals from geothermal waters—Theoretical considerations
,”
Geothermics
18
,
33
39
(
1989
).
4.
Ataev
,
Kh.
,
Valyashko
,
V. M.
,
Kravchuck
,
K. G.
,
Urusova
,
M. A.
, and
Dzhumamuradov
,
B. D.
, “
Solubility of K2SO4 in aqueous solutions and in molten KNO3 at 100-530 °C and vapour pressure
,”
Zh. Neorg. Khim.
39
,
523
528
(
1994
).
5.
Atkinson
,
G.
,
Raju
,
K.
, and
Howell
,
R. D.
, “
The thermodynamics of scale prediction
,” in
SPE International Symposium on Oilfield Chemistry, 20-22 February, Anaheim, California
, Society of Petroleum Engineers Paper No. 21021 (
Society of Petroleum Engineers
,
1991
), pp.
209
215
.
6.
Azimi
,
G.
,
Papangelakis
,
V. G.
, and
Dutrizac
,
J. E.
, “
Modeling of calcium sulphate solubility in concentrated multi-component sulphate solutions
,”
Fluid Phase Equilib.
260
,
300
315
(
2007
).
7.
Balarew
,
Chr.
, “
Calculation of the free Gibbs energy of phase transitions using solubility data. 1. The system Na2SO4–Na2SeO4–H2O at 15 °C: Stable and metastable equilibria
,”
Pure Appl. Chem.
74
,
1793
1800
(
2002
).
8.
Balarew
,
Chr.
,
Tepavitcharova
,
S.
,
Rabadjieva
,
D.
, and
Voigt
,
W.
, “
Solubility and crystallization in the system MgCl2−MgSO4−H2O at 50 and 75 °C
,”
J. Solution Chem.
30
,
815
823
(
2001
).
9.
Balarew
,
D.
, “
Löslichkeit und korngrösse
,”
Z. Anorg. Allg. Chem.
145
,
122
126
(
1925
).
10.
Benrath
,
A.
, “
Über die löslichkeit von salzen und salzgemischen in wasser bei temperaturen oberhalb von 100°. III
,”
Z. Anorg. Allg. Chem.
247
,
147
160
(
1941
).
11.
Bergman
,
A. G.
and
Luzhnaya
,
N. P.
,
Physico-Chemical Principles of Studying and Using of Chloride-Sulfate Salt Deposits
(
Akademii Nauk SSSR
,
Moscow
,
1951
).
12.
Bergman
,
A. G.
and
Shelokhovich
,
M. L.
, “
Sulfate nitrophoska. 1. Polytherm of the ternary system H2O–K2SO4–(NH4)2SO4
,”
Zh. Prikl. Khim
15
,
187
193
(
1942
).
13.
Bernstein
,
R. E.
,
Byrne
,
R. H.
,
Betzer
,
P. R.
, and
Gerco
,
A. M.
, “
Morphologies and transformations of celestite in seawater: The role of acantharians in strontium and barium geochemistry
,”
Geochim. Cosmochim. Acta
56
,
3273
3279
(
1992
).
14.
Blount
,
C. W.
, “
Barite solubilities and thermodynamic quantities up to 300 °C and 1400 bars
,”
Am. Mineral.
62
,
942
957
(
1977
).
15.
Blount
,
C. W.
and
Dickson
,
F. W.
, “
Gypsum-anhydrite equilibrium in systems CaSO4–H2O and CaSO4–NaCl–H2O
,”
Am. Mineral.
58
,
323
331
(
1973
).
16.
Bock
,
E.
, “
On the solubility of anhydrous calcium sulfate and of gypsum in concentrated solutions of sodium chloride at 25, 30, 40 and 50 °C
,”
Can. J. Chem.
39
,
1746
1751
(
1961
).
17.
Boerlage
,
S. F. E.
,
Kennedy
,
M. D.
,
Bremere
,
I.
,
Witkamp
,
G. J.
,
Van der Hoek
,
J. P.
, and
Schippers
,
J. C.
, “
The scaling potential of barium sulphate in reverse osmosis systems
,”
J. Membr. Sci.
197
,
251
268
(
2002
).
18.
Booth
,
H. S.
and
Bidwell
,
R. M.
, “
Solubilities of salts in water at high temperatures
,”
J. Am. Chem. Soc.
72
,
2567
2575
(
1950
).
19.
Brobst
,
D. A.
,
Barite: World Production, Reserves, and Future Prospects
, Volume 1321 of Geological Survey Bulletin/United States Geological Survey (
Government Printing Office
,
Washington, DC
,
1970
).
20.
Campbell
,
A. N.
and
Cook
,
E. J. R.
, “
A study of precipitation from supersaturated solutions of strontium sulfate
,”
J. Am. Chem. Soc.
57
,
387
390
(
1935
).
21.
Campbell
,
J. R.
and
Nancollas
,
G. H.
, “
The crystallization and dissolution of strontium sulphate in aqueous solution
,”
J. Phys. Chem.
73
,
1735
1740
(
1969
).
22.
Carpenter
,
C. D.
and
Jette
,
E. R.
, “
The vapor pressures of certain hydrated metal sulfates
,”
J. Am. Chem. Soc.
45
,
578
590
(
1923
).
23.
Christov
,
C.
, “
Thermodynamic study of the KCl–K2SO4–K2Cr2O7–H2O system at temperature 298.15 K
,”
Calphad
22
,
449
457
(
1998
).
24.
Christov
,
C.
, “
Study of (m1KCl + m2MeCl2) (aq) and (m1K2SO4 + m2MeSO4) (aq) where m denotes molality and Me denotes Cu, or Ni at the temperature 298.15 K
,”
J. Chem. Thermodyn.
31
,
71
83
(
1999
).
25.
Christov
,
C.
, “
Thermodynamic study of the Na–Cu–Cl–SO4–H2O system at the temperature 298.15 K
,”
J. Chem. Thermodyn.
32
,
285
295
(
2000
).
26.
Christov
,
C.
, “
Thermodynamic study of the NaCl–Na2SO4–Na2Cr2O7–H2O system at temperature 298.15 K
,”
Calphad
25
,
11
17
(
2001
).
27.
Christov
,
C.
, “
Thermodynamic study of quaternary systems with participation of ammonium and sodium alums and chromium alums
,”
Calphad
26
,
341
352
(
2002
).
28.
Christov
,
C.
, “
Temperature variable chemical model of bromide–sulfate solution interaction parameters and solid–liquid equilibria in the Na–K–Ca–Br–SO4–H2O system
,”
Calphad
36
,
71
81
(
2012
).
29.
Christov
,
C.
,
Petrenko
,
S.
,
Balarew
,
C.
, and
Valyashko
,
V.
, “
Calculation of the Gibbs energy of mixing in crystals using Pitzer’s model
,”
J. Solution Chem.
23
,
795
812
(
1994
).
30.
Church
,
T. M.
and
Wolgemuth
,
K.
, “
Marine barite saturation
,”
Earth Planet. Sci. Lett.
15
,
35
44
(
1972
).
31.
Corti
,
H. R.
and
Fernandez-Prini
,
R.
, “
Thermodynamics of solution of gypsum and anhydrite in water over a wide temperature range
,”
Can. J. Chem.
62
,
484
488
(
1983
).
32.
Cruft
,
E. F.
and
Chao
,
P. C.
, “
Nucleation kinetics of the gypsum-anhydrite system
,” in
3rd Symposium on Salt 1969
(
Northern Ohio Geological Society
,
1970
), Vol. 1, pp.
109
l18
.
33.
Culberson
,
C. H.
,
Latham
,
G.
, and
Bates
,
R. G.
, “
Solubilities and activity coefficients of calcium and strontium sulphate in synthetic sea water at 0 °C and 25 °C
,”
J. Phys. Chem.
82
,
2693
2699
(
1978
).
34.
d’Ans
,
J.
, “
Der ubergangspunkt gips-anhydrite
,”
Kali Steinsalz
11
,
17
38
(
1968
).
35.
d’Ans
,
J.
and
Freund
,
H. E.
, “
Das system H2O–H2SO4–MgSO4
,”
Kali Steinsalz
3
,
31
33
(
1960
).
36.
Dai
,
Z.
,
Kan
,
A. T.
,
Shi
,
W.
,
Zhang
,
N.
,
Zhang
,
F.
,
Yan
,
F.
,
Bhandari
,
N.
,
Zhang
,
Z.
,
Liu
,
Y.
,
Ruan
,
G.
, and
Tomson
,
M. B.
, “
Solubility measurements and predictions of gypsum, anhydrite, and calcite over wide ranges of temperature, pressure, and ionic strength with mixed electrolytes
,”
Rock Mech. Rock Eng.
50
,
327
339
(
2017
).
37.
Davis
,
J. W.
and
Collins
,
A. G.
, “
Solubility of barium and strontium sulfates in strong electrolyte solutions
,”
Environ. Sci. Technol.
5
,
1039
1043
(
1971
).
38.
Denecker
,
M.
,
Hébert
,
R.
,
Bourgès
,
A.
,
Menendez
,
B.
, and
Doehne
,
E.
, “
Mirabilite and heptahydrate characterization from infrared microscopy and thermal data
,” in
12th International Congress on the Deterioration and Conservation of Stone
(
Columbia University
,
New York
,
2012
).
39.
Derluyn
,
H.
,
Saidov
,
T. A.
,
Espinosa-Marzal
,
R. M.
,
Pel
,
L.
, and
Scherer
,
G. W.
, “
Sodium sulfate heptahydrate I: The growth of single crystals
,”
J. Cryst. Growth
329
,
44
51
(
2011
).
40.
Dickinson
,
H. C.
and
Mueller
,
E. F.
, “
The transition temperature of sodium sulphate
,”
J. Am. Chem. Soc.
29
,
1381
1388
(
1907
).
41.
Duffie
,
J. A.
and
Beckman
,
W. A.
,
Solar Engineering of Thermal Processes
, 2nd ed. (
Wiley
,
New York
,
1991
).
42.
Dyer
,
S. J.
and
Graham
,
G. M.
, “
The effect of temperature and pressure on oilfield scale formation
,”
J. Pet. Sci. Eng.
35
,
95
107
(
2002
).
43.
Dymond
,
J.
, “
Geochemistry of nazca plate surface sediments: An evaluation of hydrothermal, biogenic, detrital and hydrogenous sources
,”
Geol. Soc. Am., Mem.
154
,
133
174
(
1981
).
44.
Eddy
,
R. D.
and
Menzies
,
A. W. C.
, “
The solubilities of certain inorganic compounds in ordinary water and in deuterium water
,”
J. Phys. Chem.
44
,
207
235
(
1940
).
45.
Enüstün
,
B. V.
and
Turkevich
,
J.
, “
Solubility of fine particles of strontium sulfate
,”
J. Am. Chem. Soc.
82
,
4502
4509
(
1960
).
46.
Eysseltova
,
J.
and
Bouaziz
,
R.
, “
IUPAC-NIST solubility data series. 93. Potassium sulfate in water
,”
J. Phys. Chem. Ref. Data
41
,
013103
(
2012
).
47.
Falkner
,
K. K.
,
Klinkhammer
,
G. P.
,
Bowers
,
T. S.
,
Todd
,
J. F.
,
Lewis
,
B. L.
,
Landing
,
W. M.
, and
Edmond
,
J. M.
, “
The behavior of barium in anoxic marine waters
,”
Geochim. Cosmochim. Acta
57
,
537
554
(
1993
).
48.
Farooqi
,
M. I.
,
Mahmood
,
R.
, and
Bashir
,
N.
, “
A critical review on the solubility of barium sulfate
,”
J. Chem. Soc. Pak.
10
,
19
27
(
1988
).
49.
Felmy
,
A. R.
,
Rai
,
D.
, and
Amonette
,
J. E.
, “
The solubility of barite and celestite in sodium sulfate: Evaluation of thermodynamic data
,”
J. Solution Chem.
19
,
175
185
(
1990
).
50.
Ferguson
,
R. J.
and
Ferguson
,
B. R.
, “
The chemistry of strontium and barium scales
,” in
Association of Water Technologies
,
Reno, NV
, 20–23 October
2010
, pp.
1
17
.
51.
Filippov
,
V. K.
,
Charykov
,
N. A.
, and
Rumyantzev
,
A. V.
, “
The application of Pitzer’s method to salt-aqueous system with complex formation in solution
,”
Dokl. Akad. Nauk SSSR
296
,
665
668
(
1987
).
52.
Ford
,
G.
,
Niblett
,
C.
, and
Walker
,
L.
,
The Future for Ocean Technology
(
Frances Pinter
,
Wolfeboro, NH, USA
,
1987
).
53.
Freyer
,
D.
and
Voigt
,
W.
, “
Crystallization and phase stability of CaSO4 and CaSO4-based salts
,”
Monatsh. Chem.
134
,
693
719
(
2003
).
54.
Gallo
,
G.
, “
Equilibrium of strontium sulfate and water at various temperatures
,”
Ann. Chim. Appl.
25
,
628
631
(
1935
).
55.
Gates
,
G. L.
and
Caraway
,
W. H.
,
Oil Well Scale Formation in Water Flood Operations Using Ocean Brines
(
U.S. Bureau of Mines, Report of Investigation
,
Wilmington, California
,
1965
), Vol. 6658,
28
pp.
56.
Genceli
,
F. E.
,
Lutz
,
M.
,
Spek
,
A. L.
, and
Witkamp
,
G.-J.
, “
Crystallization and characterization of a new magnesium sulfate hydrate MgSO4 · 11H2O
,”
Cryst. Growth Des.
7
,
2460
2466
(
2007
).
57.
Gingele
,
F.
and
Dahmke
,
A.
, “
Discrete barite particles and barium as tracers of paleoproductivity in south atlantic sediments
,”
Paleoceanography
9
,
151
168
(
1994
).
58.
Greenberg
,
J. P.
and
Moller
,
N.
, “
The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–K–Ca–Cl–SO4–H2O system to high concentration from 0 to 250 °C
,”
Geochim. Cosmochim. Acta
53
,
2503
2518
(
1989
).
59.
Grigor'ev
,
A. P.
and
Shamaev
,
P. P.
, “
Determination of gypsum-anhydrite equilibrium temperature
,”
Izv. Sibir. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk
104
(
1976
).
60.
Hall
,
C.
and
Hamilton
,
A.
, “
The heptahydrate of sodium sulfate: Does it have a role in terrestrial and planetary geochemistry?
,”
Icarus
198
,
277
279
(
2008
).
61.
Hall
,
R. E.
,
Robb
,
J. A.
, and
Coleman
,
C. E.
, “
The solubility of calcium sulfate at boiler-water temperatures
,”
J. Am. Chem. Soc.
48
,
927
938
(
1926
).
62.
Hamilton
,
A.
and
Hall
,
C.
, “
Sodium sulfate heptahydrate: A synchrotron energy dispersive diffraction study of an elusive metastable hydrated salt
,”
J. Anal. Atom. Spectrom.
23
,
840
844
(
2008
).
63.
Hanson
,
C.
and
Murthy
,
S. L. N.
, “
The ocean as a commercial source of minerals
,”
Chem. Eng.
295
298
(
1972
).
64.
Hardie
,
L. A.
, “
The gypsum-anhydrite equilibrium at one atmosphere
,”
Am. Mineral.
52
,
171
200
(
1967
).
65.
Hartley
,
H.
,
Jones
,
B. M.
, and
Hutchinson
,
G. A.
, “
The spontaneous crystallization of sodium sulphate solutions
,”
J. Chem. Soc. Trans.
93
,
825
833
(
1908
).
66.
Harvey
,
A. H.
and
Salomon
,
M.
, “
Editorial: IUPAC-NIST solubility data series
,”
J. Phys. Chem. Ref. Data
39
,
020401
(
2010
).
67.
Harvie
,
C. E.
and
Weare
,
J. H.
, “
The prediction of mineral solubilities in natural waters, the Na–K–Mg–Ca–Cl–SO4–H2O system from zero to high concentration at 25°C
,”
Geochim. Cosmochim. Acta
44
,
981
997
(
1980
).
68.
Harvie
,
C. E.
,
Weare
,
J. H.
,
Hardie
,
L. A.
, and
Eugster
,
H. P.
, “
Evaporation of seawater, calculated mineral sequences
,”
Science
208
,
498
500
(
1980
).
69.
Harvie
,
C. E.
,
Eugster
,
H. P.
, and
Weare
,
J. H.
, “
Mineral equilibria in the six component seawater system Na–K–Mg–Ca–Cl–SO4–H2O system at 25 °C. II. Compositions of the saturated solutions
,”
Geochim. Cosmochim. Acta
46
,
1603
1618
(
1982
).
70.
Harvie
,
C. E.
,
Moller
,
N.
, and
Weare
,
J. H.
, “
The prediction of mineral solubilities in natural waters, the Na–K–Mg–Ca–H–Cl–SO4-OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C
,”
Geochim. Cosmochim. Acta
48
,
723
751
(
1984
).
71.
Helgeson
,
H. C.
, “
Thermodynamics of hydrothermal systems at elevated temperatures and pressures
,”
Am. J. Sci.
267
,
729
804
(
1969
).
72.
Herovsky
,
J.
and
Berezicky
,
S.
, “
The deposition of radium and other alkaline earth metals at the dropping mercury cathode
,”
Collect. Czech. Chem. Commun.
1
,
19
46
(
1929
).
73.
Hill
,
A. E.
, “
The transition temperature of gypsum to anhydrite
,”
J. Am. Chem. Soc.
59
,
2242
2244
(
1937
).
74.
Holmes
,
H. F.
and
Mesmer
,
R. E.
, “
Isopiestic studies of aqueous solutions at elevated temperatures. VIII. The alkali-metal sulfates
,”
J. Chem. Thermodyn.
18
,
263
275
(
1986
).
75.
Hulett
,
G. A.
and
Allen
,
L. E.
, “
The solubility of gypsum
,”
J. Am. Chem. Soc.
24
,
667
679
(
1902
).
76.
Innorta
,
G. E.
,
Rabbi
,
E.
, and
Tomadin
,
L.
, “
The gypsum-anhydrite equilibrium by solubility measurements
,”
Geochim. Cosmochim. Acta
44
,
1931
1936
(
1980
).
77.
Jamialahmadi
,
M.
and
Muller-Steinhagen
,
H.
, “
Mechanisms of scale deposition and scale removal in porous media
,”
Int. J. Oil, Gas Coal Technol.
1
,
81
108
(
2008
).
78.
Kanno
,
M.
, “
Design and cost studies on the extraction of uranium from seawater
,”
Sep. Sci. Technol.
16
,
999
1018
(
1981
).
79.
Kargel
,
J. S.
,
Furfaro
,
R.
,
Prieto-Ballesteros
,
O.
,
Rodriguez
,
J. A. P.
,
Montgomery
,
D. R.
,
Gillespie
,
A. R.
,
Marion
,
G. M.
, and
Wood
,
S. E.
, “
Martian hydrogeology sustained by thermally insulating gas and salt hydrates
,”
Geology
35
,
975
978
(
2007
).
80.
Kelly
,
K. K.
,
Southard
,
J. C.
, and
Anderson
,
C. T.
,
Thermodynamic Properties of Gypsum and Its Dehydration Products
, U.S. Bureau of Mines Technical Paper 625 (
U. S. Government Printing Office
,
Washington, DC
,
1941
).
81.
Khodakovsky
,
I. L.
,
Mishin
,
I. V.
, and
Zhogina
,
V. V.
, “
About temperature dependence of solubility constants and some limits on the chemical composition of hydrothermal solutions
,”
Geokhimiya
7
,
861
866
(
1966
).
82.
Kim
,
H.-T.
and
Frederick
, Jr.,
W. J.
, “
Evaluation of pitzer ion interaction parameters of aqueous electrolytes at 25 °C. 1. Single salt parameters
,”
J. Chem. Eng. Data
33
,
177
184
(
1988
).
83.
Knacke
,
O.
and
Gans
,
W.
, “
The thermodynamics of the system CaSO4–H2O
,”
Z. Phys. Chem.
104
,
41
48
(
1977
).
84.
Kontrec
,
J.
,
Kralj
,
D.
, and
Breèeviæ
,
L.
, “
Transformation of anhydrous calcium sulphate into calcium sulphate dihydrate in aqueous solutions
,”
J. Cryst. Growth
240
,
203
211
(
2002
).
85.
Kornicker
,
W. A.
,
Presta
,
P. A.
,
Paige
,
C. R.
,
Johnson
,
D. M.
,
Hileman
, Jr.,
O. E.
, and
Snodgrass
,
W. J.
, “
The aqueous dissolution kinetics of the barium/lead solid solution series at 25 °C and 60 °C
,”
Geochim. Cosmochim. Acta
55
,
3531
3541
(
1991
).
86.
Krumgalz
,
B. S.
, “
Ion interaction approach to geochemical aspects of the Dead Sea
,” in
The Dead Sea. The Lake and Its Setting
, edited by
Niemi
,
T. M.
,
Ben-Avraham
,
Z.
, and
Gat
,
J. R.
(
Oxford University Press
, New York, Oxford
,
1997
), pp.
145
160
.
87.
Krumgalz
,
B. S.
, “
Application of the pitzer ion interaction model to natural hypersaline brines
,”
J. Mol. Liq.
91
,
3
19
(
2001
).
88.
Krumgalz
,
B. S.
, “
Temperatures dependence of mineral solubility in water. Part 1. Alkaline and alkaline earth chlorides
,”
J. Phys. Chem. Ref. Data
46
,
043101
(
2017
).
89.
Krumgalz
,
B. S.
, “
Temperatures dependence of mineral solubility in water. Part 2. Alkaline and alkaline earth bromides
,”
J. Phys. Chem. Ref. Data
47
,
013101
(
2018
).
90.
Krumgalz
,
B. S.
and
Millero
,
F. J.
, “
Physico-chemical study of the Dead Sea waters. I. Activity coefficients of major ions in Dead Sea water
,”
Mar. Chem.
11
,
209
222
(
1982
).
91.
Krumgalz
,
B. S.
and
Millero
,
F. J.
, “
Physico-chemical study of the Dead Sea waters. III. On gypsum saturation in Dead Sea waters and their mixtures with mediterranean sea water
,”
Mar. Chem.
13
,
127
139
(
1983
).
92.
Krumgalz
,
B. S.
and
Millero
,
F. J.
, “
Halite solubility in Dead Sea waters
,”
Mar. Chem.
27
,
219
233
(
1989
).
93.
Krumgalz
,
B. S.
,
Starinsky
,
A.
, and
Pitzer
,
K. S.
, “
Ion interaction approach: Pressure effect on the solubility of some minerals in submarine brines and seawater
,”
J. Solution Chem.
28
,
667
692
(
1999
).
94.
Krumgalz
,
B. S.
,
Hecht
,
A.
,
Starinsky
,
A.
, and
Katz
,
A.
, “
Thermodynamic constraints on Dead Sea evaporation, can the Dead Sea dry up?
,”
Chem. Geol.
165
,
1
11
(
2000
).
95.
Krumgalz
,
B. S.
,
Magdal
,
E.
, and
Starinsky
,
A.
, “
The evolution of a chloride sedimentary sequence–simulated evaporation of the Dead Sea lake
,”
Isr. J. Earth Sci.
51
,
253
267
(
2002
).
96.
Kurilenko
,
V. V.
,
Filippov
,
V. K.
,
Charykov
,
N. A.
, and
Shwarts
,
A. A.
, “
The application of Pitzer’s method for hydrogeochemical modeling of the processes of development of modern evaporative basins
,”
Dokl. Akad. Nauk SSSR
311
,
193
196
(
1990
).
97.
Langmuir
,
D.
and
Melchior
,
D.
, “
The geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from Palo Duro Basin, Texas
,”
Geochim. Cosmochim. Acta
49
,
2423
2432
(
1985
).
98.
Latimer
,
W. M.
,
Oxidation Potentials
(
Prentice-Hall
,
New York
,
1952
).
99.
Lee
,
S.
,
Cho
,
J.
, and
Elimelech
,
M.
, “
Influence of colloidal fouling and feed water recovery on salt rejection of RO and NF membranes
,”
Desalination
160
,
1
12
(
2004
).
100.
Lemarchands
,
M. M.
, “
Séparation quantitative du barium et du calcium
,”
Comput. Rend. Acad. Sci. Paris
187
,
601
603
(
1928
).
101.
Li
,
D.
,
Huang
,
B.
,
Meng
,
L.
, and
Xu
,
Q.
, “
Solubility measurement and solid-liquid equilibrium model for the ternary system MgBr2 + MgSO4 + H2O at 288.15 K
,”
Braz. J. Chem. Eng.
31
,
561
570
(
2014
).
102.
Loewel
,
H.
, “
Observations sur la sursaturation des dissolutions salines
,”
Ann. Chim. Phys.
29
,
62
127
(
1850
).
103.
Lu
,
C. H.
and
Fabuss
,
B. M.
, “
Calcium sulfate scaling in saline water distillation
,”
Ind. Eng. Chem. Process Des. Dev.
7
,
206
212
(
1968
).
104.
Luk'yanova
,
E. I.
,
Sokol
,
V. I.
, and
Sokolova
,
G. N.
, “
The solubility in quaternary reciprocal system (2KCl + MgSO4 ↔ K2SO4 + MgCl2) + H2O at 75 °C
,”
Zh. Neorg. Khim
1
,
298
307
(
1956
).
105.
Mager
,
H.
and
Lieser
,
K. H.
, “
Rekristallisation und alterung von strontiumsulfat, II. Rekristallisation und alterung nach der fällung aus verdünnten lösungen
,”
Z. Phys. Chem.
81
,
81
88
(
1972
).
106.
Magin
,
R. L.
,
Mangum
,
B. W.
,
Statler
,
J. A.
, and
Thornton
,
D. D.
, “
Transition temperatures of the hydrates of Na2SO4, Na2HPO4 and KF as fixed points in biomedical thermometry
,”
J. Res. Natl. Bur. Stand.
86
,
181
192
(
1981
).
107.
Makarov
,
S. Z.
and
Blidin
,
V. P.
, “
Polytherm of the quaternary system Na2CO3–Na2SO4–NaCl–H2O and solid solutions of berkeite type
,”
Izv. Akad. Nauk SSSR, Ser. khim.
865
892
(
1938
).
108.
Malinin
,
S. D.
,
Uchameyschvili
,
N.Ye.
, and
Khitarov
,
N. I.
, “
Application of the theory of strong electrolytes to the solubility of barite in aqueous metal chlorides under hydrothermal conditions
,”
Geokhimiya
927
938
(
1969
).
109.
Mangold
,
N.
,
Gendrin
,
A.
,
Gondet
,
B.
,
LeMouelic
,
S.
,
Quantin
,
C.
,
Ansan
,
V.
,
Bibring
,
J.-P.
,
Langevin
,
Y.
,
Masson
,
P.
, and
Neukum
,
G.
, “
Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars
,”
Icarus
194
,
519
543
(
2008
).
110.
Marion
,
G. M.
and
Farren
,
R. E.
, “
Mineral solubilities in the Na–K–Mg–Ca–Cl–SO4–H2O system: A re-evaluation of the sulfate chemistry in the Spencer-Moller-Weare model
,”
Geochim. Cosmochim. Acta
63
,
1305
1318
(
1999
).
111.
Marliacy
,
P.
,
Hubert
,
N.
,
Schuffenecker
,
L.
, and
Solimando
,
R.
, “
Use of Pitzer’s model to calculate thermodynamic properties of aqueous electrolyte solutions of Na2SO4 + NaCl between 273.15 and 373.15 K
,”
Fluid Phase Equilib.
148
,
95
106
(
1998
).
112.
Marliacy
,
P.
,
Solimando
,
R.
,
Bouroukba
,
M.
, and
Schuffenecker
,
L.
, “
Thermodynamics of crystallization of sodium sulfate decahydrate in H2O–NaCl–Na2SO4, application to Na2SO4 · 10H2O-based latent heat storage materials
,”
Thermochim. Acta
344
,
85
94
(
2000
).
113.
Marshall
,
W. L.
and
Slusher
,
R.
, “
Thermodynamics of calcium sulfate dihydrate in aqueous sodium chloride solutions, 0–110°
,”
J. Phys. Chem.
70
,
4015
4027
(
1966
).
114.
Marshall
,
W. L.
and
Slusher
,
R.
, “
Aqueous systems at high temperature. Solubility to 200 °C of calcium sulfate and its hydrates in sea water and saline water concentrates, and temperature-concentration limits
,”
J. Chem. Eng. Data
13
,
83
93
(
1968
).
115.
Marshall
,
W. L.
,
Slusher
,
R.
, and
Jones
,
E. V.
, “
Aqueous systems at high temperature. XIV. Solubility and thermodynamic relationships for CaSO4 in NaCl–H2O solutions from 40 °C to 200 °C, 0 to 4 molal NaCl
,”
J. Chem. Eng. Data
9
,
187
191
(
1964
).
116.
Massie
,
K. S.
, “
Extraction of inorganic materials from sea water in North-West Europe
,” in
The North-West European Shelf Seas: The Sea Bed and the Sea in Motion. II. Physical and Chemical Oceanography, and Physical Resources
, Elsevier Oceanography Series, edited by
Banner
,
F. T.
,
Collins
,
M. B.
, and
Massie
,
K. S.
(
Elsevier
,
Amsterdam
,
1980
), Vol. 24B, Chap. 19, pp.
569
572
.
117.
McIlhenny
,
W.F.
, “
Extraction of economic inorganic materials from sea water
,” in
Chemical Oceanography
, 2nd ed., edited by
Riley
,
J. P.
and
Skirrow
,
G.
(
Academic Press
,
London, New York
,
1975
), Vol. 4, pp.
155
218
.
118.
Melcher
,
A. C.
, “
The solubility of silver chloride, barium sulfate, and calcium sulfate at high temperatures
,”
J. Am. Chem. Soc.
32
,
50
66
(
1910
).
119.
Meng
,
L. Z.
,
Deng
,
T. L.
,
Guo
,
Y. F.
,
Li
,
D.
, and
Yang
,
L.
, “
Measurement and thermodynamic model study on solid + liquid equilibria and physicochemical properties of the ternary system MgBr2 + MgSO4 + H2O at 323.15 K
,”
Fluid Phase Equilib.
342
,
88
94
(
2013
).
120.
Møller
,
N.
, “
The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–Ca–Cl–SO4–H2O system, to high temperature and concentration
,”
Geochim. Cosmochim. Acta
52
,
821
837
(
1988
).
121.
Monnin
,
C.
, “
A thermodynamic model for the solubility of barite and celestite in electrolyte solutions and seawater to 200 °C and to 1 kbar
,”
Chem. Geol.
153
,
187
209
(
1999
).
122.
Monnin
,
C.
and
Galinier
,
C.
, “
The solubility of celestite and barite in electrolyte solutions and natural waters at 25 °C: A thermodynamic study
,”
Chem. Geol.
71
,
283
296
(
1988
).
123.
Moreno
,
E. C.
and
Osborn
,
G.
, “
Solubility of gypsum and dicalcium phosphate dihydrate in the system CaO–P2O5–SO3–H2O and in soils
,”
Soil Sci. Soc. Am. Proc.
27
,
614
619
(
1963
).
124.
Nakayama
,
F. S.
and
Rasnik
,
B. A.
, “
Calcium electrode method for measuring dissociation and solubility of calcium sulfate dihydrate
,”
Anal. Chem.
39
,
1022
1023
(
1967
).
125.
Neuman
,
E. W.
, “
Solubility relations of barium sulfate in aqueous solutions of strong electrolytes
,”
J. Am. Chem. Soc.
55
,
879
884
(
1933
).
126.
Nordstrom
,
D. K.
and
Munoz
,
J. L.
,
Geochemical Thermodynamics
, 2nd ed. (
Blackwell Scientific Publications
,
Boston, USA
,
1994
).
127.
Ostroff
,
A. G.
, “
Conversion of gypsum to anhydrite in aqueous salt solutions
,”
Geochim. Cosmochim. Acta
28
,
1363
1372
(
1964
).
128.
Oswald
,
I. D. H.
,
Hamilton
,
A.
,
Hall
,
Ch.
,
Marshall
,
W. G.
,
Prior
,
T. J.
, and
Pulham
,
C.R.
, “
In situ characterization of elusive salt hydrates—The crystal structures of the heptahydrate and octahydrate of sodium sulfate
,”
J. Am. Chem. Soc.
130
,
17795
17800
(
2008
).
129.
Pabalan
,
R. T.
and
Pitzer
,
K. S.
, “
Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na–K–Mg–Cl–SO4–OH–H2O
,”
Geochim. Cosmochim. Acta
51
,
2429
2443
(
1987
).
130.
Paige
,
C. R.
,
Kornicker
,
W. A.
,
Hileman
, Jr.,
O. E.
, and
Snodgrass
,
W. J.
, “
Solution equilibria for uranium ore processing: The BaSO4–H2SO4–H2O system and the RaSO4–H2SO4–H2O system
,”
Geochim. Cosmochim. Acta
62
,
15
23
(
1998
).
131.
Partridge
,
E. P.
and
White
,
A. H.
, “
The solubility of calcium sulfate from 0 to 200 °C
,”
J. Am. Chem. Soc.
51
,
360
370
(
1929
).
132.
Pérez-Villaseñor
,
F.
and
Iglesias-Silva
,
G. A.
, “
Prediction of osmotic and activity coefficients using a modified Pitzer equation for multicomponent strong electrolyte systems at 298 K
,”
Ind. Eng. Chem. Res.
42
,
1087
1092
(
2003
).
133.
Phutela
,
R. C.
and
Pitzer
,
K. S.
, “
Heat capacity and other thermodynamic properties of aqueous magnesium sulfate to 473 K
,”
J. Phys. Chem.
90
,
895
901
(
1986
).
134.
Physikalish Chemische Tabellen
, edited by
Landolt
,
H.
and
Bornstein
,
R.
(
Verlag von Julius Springer
,
Berlin
,
1894
).
135.
Pitzer
,
K. S.
, “
Thermodynamics of electrolytes. I. Theoretical basis and general equations
,”
J. Phys. Chem.
77
,
268
277
(
1973
).
136.
Pitzer
,
K. S.
, “
Theory, ion interaction approach
,” in
Activity Coefficients in Electrolyte Solutions
, edited by
Pytkowicz
,
R. M.
(
CRC Press
,
Boca Raton, FL
,
1979
), pp.
157
208
.
137.
Pitzer
,
K. S.
, “
Theoretical considerations of solubility with emphasis on mixed aqueous electrolytes
,”
Pure Appl. Chem.
58
,
1599
1610
(
1986
).
138.
Pitzer
,
K.S.
, “
Ion interaction approach, theory and data correlation
,” in
Activity Coefficients in Electrolyte Solutions
, 2nd ed., edited by
Pitzer
,
K. S.
(
CRC Press
,
Boca Raton, FL
,
1991
), pp.
75
153
.
139.
Pitzer
,
K. S.
and
Mayorga
,
G.
, “
Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent
,”
J. Phys. Chem.
77
,
2300
2308
(
1973
).
140.
Pitzer
,
K. S.
and
Mayorga
,
G.
, “
Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2-2 electrolytes
,”
J. Solution Chem.
3
,
539
546
(
1974
).
141.
Plummer
,
L. N.
,
Parkhurst
,
D. L.
,
Fleming
,
G. W.
, and
Dunkle
,
S. A.
, “
A computer program incorporating Pitzer’s equations for calculation of geochemical reactions in brines
,” Report No. 88-4153,
U.S. Geological Survey, Water Resources Investigation
,
Reston, Virginia
,
1988
,
310
pp.
142.
Posnjak
,
E.
, “
The system CaSO4–H2O
,”
Am. J. Sci.
235A
,
247
272
(
1938
).
143.
Potter
, II,
R. W.
and
Clynne
,
M. A.
, “
Solubility of highly soluble salts in aqueous media. Part 1. NaCl, KCl, CaCl2, Na2SO4, and K2SO4 solubilities to 100 °C
,”
J. Res. U.S. Geol. Surv.
6
,
701
705
(
1978
).
144.
Power
,
W. H.
,
Fabuss
,
B. M.
, and
Satterfield
,
C. N.
, “
Transient solute concentrations and phase changes of calcium sulfate in aqueous sodium chloride
,”
J. Chem. Eng. Data
11
,
149
154
(
1966
).
145.
Raju
,
K.
and
Atkinson
,
G.
, “
Thermodynamics of ‘scale’ mineral solubilities. 1. BaSO4(s) in H2O and aqueous NaCl
,”
J. Chem. Eng. Data
33
,
490
495
(
1988
).
146.
Raju
,
K.
and
Atkinson
,
G.
, “
Thermodynamics of ‘scale’ mineral solubilities. 2. SrSO4(s) in aqueous NaCl
,”
J. Chem. Eng. Data
34
,
361
364
(
1989
).
147.
Raju
,
K. U. G.
and
Atkinson
,
G.
, “
The thermodynamics of ‘scale’ mineral solubilities. 3. Calcium sulfate in aqueous NaCl
,”
J. Chem. Eng. Data
35
,
361
367
(
1990
).
148.
Ramette
,
R. W.
and
Anderson
,
O.
, “
On the averred effects of radioisotopic tracers on solubility
,”
J. Inorg. Nucl. Chem.
25
,
763
770
(
1963
).
149.
Rard
,
J. A.
and
Miller
,
D. G.
, “
Isopiestic determination of the osmotic coefficients of aqueous Na2SO4, MgSO4, and Na2SO4–MgSO4 at 25 °C
,”
J. Chem. Eng. Data
26
,
33
38
(
1981
).
150.
Ravich
,
M. I.
and
Borovaya
,
F. E.
, “
Phase equilibrium in system potassium sulfate-water at high temperatures and pressure
,”
Zh. Neorg. Khim.
13
,
1418
1425
(
1968
).
151.
Reardon
,
E. J.
and
Armstrong
,
D. K.
, “
Celestite (SrSO4(s)) solubility in water, seawater and NaCl solution
,”
Geochim. Cosmochim. Acta
51
,
63
72
(
1987
).
152.
Reference Book of Experimental Data of the Solubility of Multicomponent Aqueous-Salt Systems
, 2nd ed., edited by
Pel'sh
,
A. D.
(
Khimiya
,
Leningrad
,
1973
).
153.
Richards
,
T. W.
and
Churchill
,
J. B.
, “
The use of the transition temperature of complex systems as fixed points in thermometry
,”
Proc. Am. Acad. Arts Sci.
34
,
277
280
(
1899
).
154.
Richards
,
T. W.
and
Yngve
,
V.
, “
The transition temperatures of strontium chloride and strontium sulfate as fixed points in thermometry
,”
J. Am. Chem. Soc.
40
,
89
95
(
1918
).
155.
Robie
,
R. A.
,
Hemingway
,
B. S.
, and
Fisher
,
J. R.
,
Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and Higher Temperatures
, U.S. Geological Survey Bulletin (
US Government Printing Office
,
Washington
,
1978
), Vol. 1452,
456
pp.
156.
Robson
,
H. L.
, “
The system MgSO4–H2O from 68 to 240 °C
,”
J. Am. Chem. Soc.
49
,
2772
2783
(
1927
).
157.
Rogers
,
P. S. Z.
, “
Thermodynamics of geothermal fluids
,” Ph.D. dissertation (
University of California
,
Berkeley
,
1981
).
158.
Rosseinsky
,
D. R.
, “
The solubilities of sparingly soluble salts in water. Part 5. The solubility of barium sulphate at 25 °C
,”
Trans. Faraday Soc.
54
,
116
118
(
1958
).
159.
Safari
,
H.
,
Gharagheizi
,
F.
,
Lemraski
,
A. S.
,
Jamialahmadi
,
M.
,
Mohammadi
,
A. H.
, and
Ebrahimi
,
M.
, “
Rigorous modeling of gypsum solubility in Na–Ca–Mg–Fe–Al–H–Cl–H2O system at elevated temperatures
,”
Neural Comput. Appl.
25
,
955
965
(
2014
).
160.
Sborgi
,
U.
and
Bianchi
,
C.
, “
Solubility, conductivity and X-ray analysis of calcium sulfate anhydrite and semihydrate
,”
Gazz. Chim. Ital.
70
,
823
835
(
1940
).
161.
Schultze
,
L. E
and
Bauer
,
D. J.
, “
Operation of a mineral recovery unit on brine from the Salton Sea known geothermal resource area
,” Technical Report BUMINES-RI-8680 (
Bureau of Mines, Reno Research Center
,
Reno, NV
,
1982
),
18
pp.
162.
Seetharam
,
B.
and
Srinivasan
,
D.
, “
Recovery minerals from seawater
,”
Chem. Eng. World
13
,
63
65
(
1978
).
163.
Shul'gina
,
M. P.
,
Kharchuk
,
O. S.
, and
Yanat’eva
,
O. K.
, “
New solid phases in the system KCl–K2SO4–H2O
,”
Izv. Sect. Fiz.-Khim. Anal. Akad. Nauk SSSR
26
,
198
210
(
1955
).
164.
Silvester
,
L. F.
and
Pitzer
,
K. S.
, “
Thermodynamics of electrolytes. X. Enthalpy and the effect of temperature on the activity coefficients
,”
J. Solution Chem.
7
,
327
337
(
1978
).
165.
Simoes
,
M. C.
,
Hughes
,
K. J.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashanian
,
M.
, “
Estimation of the Pitzer parameters for 1-1, 2-1, 3-1, 4-1, and 2-2 single electrolytes at 25 °C
,”
J. Chem. Eng. Data
61
,
2536
2554
(
2016
).
166.
Sirbu
,
F.
,
Iulian
,
O.
,
Ion
,
A. C.
, and
Ion
,
I.
, “
Activity coefficients of electrolytes in the NaCl + Na2SO4 + H2O ternary system from potential difference measurements at (298.15, 303.15, and 308.15) K
,”
J. Chem. Eng. Data
56
,
4935
4943
(
2011
).
167.
Skinner
,
B. J.
,
Earth Resources
(
Prentice-Hall, Inc.
,
Englewood Cliffs, New Jersey
,
1989
).
168.
Smith
,
R. M.
and
Martell
,
A.E.
,
Critical Stability Constants
, Volume 4 of Inorganic Complexes (
Plenum Press
,
New York, USA
,
1976
),
257
pp.
169.
Solubilities, Inorganic and Metal-Organic Compounds. A Compilation of Solubility Data from the Periodical Literature
, edited by
Linke
,
W. F.
(
American Chemical Society
,
Washington, DC
,
1958
), Vol. I.
170.
Solubilities, Inorganic and Metal-Organic Compounds. A Compilation of Solubility Data from the Periodical Literature
, A Revision and Continuation of the Compilation Originated by Seidell, A., 4th ed., edited by
Linke
,
W. F.
(
American Chemical Society
,
Washington, DC
,
1965
), Vol. II.
171.
Spencer
,
R. J.
,
Møller
,
N.
, and
Weare
,
J. H.
, “
The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–K–Ca–Mg–SO4–H2O system at temperatures below 25 °C
,”
Geochim. Cosmochim. Acta
54
,
575
590
(
1990
).
172.
Spravochnik po Rastvorimosti Solevykh Sistem, Vols. I and II
, edited by
Bukshtein
,
V. M.
,
Valyashko
,
M. G.
, and
Pel'sh
,
A.D.
(
Izd. Vses. Nauch.-Issled. Inst. Goz., Goskhimizdat.
,
Moscow-Leningrad
,
1953
),
1270
pp.
173.
Steiger
,
M.
and
Asmussen
,
S.
, “
Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4–H2O and the generation of stress
,”
Geochim. Cosmochim. Acta
72
,
4291
4306
(
2008
).
174.
Steiger
,
M.
,
Kiekbusch
,
J.
, and
Nicolai
,
A.
, “
An improved model incorporating Pitzer’s equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code
,”
Constr. Build. Mater.
22
,
1841
1850
(
2008
).
175.
Steiger
,
M.
,
Linnow
,
K.
,
Ehrhardt
,
D.
, and
Rohde
,
M.
, “
Decomposition reactions of magnesium sulfate hydrates and phase equilibria in the MgSO4–H2O and Na+–Mg2+–Cl–SO42−–H2O systems with implications for Mars
,”
Geochim. Cosmochim. Acta
75
,
3600
3626
(
2011
).
176.
Strübel
,
G.
, “
Die hydrothermale löslichkeit von colestin im system SrSO4–NaCl–H2O
,”
Neues Jahrb. Mineral. Monatsh.
5
,
99
108
(
1966
).
177.
Strübel
,
G.
, “
Zur kenntnis und genetischen bedeutung des systems BaSO4–NaCl–H2O
,”
Neues Jahrb. Mineral. Monatsh.
4
,
223
234
(
1967
).
178.
Suresh
,
B.
and
Yokose
,
K.
, “
Sodium sulfate
,” in
Chemical Economic Handbook
(
SRI Consulting
,
Zurich
,
2006
).
179.
Tallmadge
,
J. A.
,
Butt
,
J. B.
, and
Solomon
,
H. J.
, “
Minerals from sea salt
,”
Ind. Eng. Chem.
56
,
44
65
(
1964
).
180.
Telkes
,
M.
, “
Nucleation of supersaturated inorganic salt solutions
,”
Ind. Eng. Chem.
44
,
1308
1310
(
1952
).
181.
Templeton
,
C. C.
, “
Solubility of barium sulfate in sodium chloride solutions from 25° to 95°C
,”
J. Chem. Eng. Data
5
,
514
516
(
1960
).
183.
Tilden
,
W. A.
and
Shenstone
,
W. A.
, “
On the Solubility of Salts in Water at High Temperatures
,” Phil. Trans. R. Soc. Lond.
172
,
23
36
(
1984
).
184.
Trendafelov
,
D.
,
Christov
,
C.
,
Balarew
,
C.
, and
Karapetkova
,
A.
, “
Study of the conversion of CaSO4 to CaCO3 within the CaSO4 + Na2CO3 = CaCO3 + Na2SO4 four-component water-salt system
,”
Collect. Czech. Chem. Commun.
60
,
2107
2111
(
1995
).
185.
Uchameyshvili
,
N. Y.
,
Malinin
,
S. D.
, and
Khitarov
,
N. I.
, “
Solubility of barite in concentrated chloride solutions of some metals at elevated temperatures in relation to problems of genesis of barite deposits
,”
Geochem. Int. USSR
3
,
951
963
(
1966
).
186.
van't Hoff
,
S. H.
,
Armstrong
,
E. F.
,
Hinrichesen
,
W.
,
Weigert
,
F.
, and
Just
,
G.
, “
Gips und anhydrite
,”
Z. Phys. Chem.
45
,
257
306
(
1903
).
187.
Vener
,
R. E.
and
Thompson
,
A. R.
, “
Solubility and density isotherms for sodium sulfate-ethylene glycol-water
,”
Ind. Eng. Chem.
41
,
2242
2247
(
1949
).
188.
Vener
,
R. E.
and
Thompson
,
A. R.
, “
Solubility and density isotherms. The system sodium sulfate-ethyl alcohol-water
,”
Ind. Eng. Chem.
42
,
171
174
(
1950
).
189.
Voigt
,
W.
, “
Modellierung der löslichkeiten in multikomponent-salzlösungen
,”
Freib. Forschh. A
853
,
5
36
(
1999
).
190.
Voigt
,
W.
, “
What we know and still not know about oceanic salts
,”
Pure Appl. Chem.
87
,
1099
1126
(
2015
).
191.
Wagman
,
D. D.
,
Evans
,
W. H.
,
Parker
,
V. B.
,
Schumm
,
R. H.
,
Halow
,
I.
,
Bailey
,
S. M.
,
Churney
,
K. L.
, and
Nuttall
,
R. L.
, “
The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units
,”
J. Phys. Chem. Ref. Data
11
(
Suppl. 2
) (
1982
).
192.
Washburn
,
E. R.
and
Clem
,
W. J.
, “
The transition temperature of sodium sulfate heptahydrate
,”
J. Am. Chem. Soc.
60
,
754
757
(
1938
).
193.
Weston
,
A.
, “
The quaternary system potassium sulphate-magnesium sulphate-ammonium sulphate-water
,”
J. Chem. Soc.
121-122
,
1223
1237
(
1922
).
194.
Yeatts
,
L. B.
and
Marshall
,
W. L.
, “
Apparent invariance of activity coefficients of calcium sulfate at constant ionic strength and temperature in the system CaSO4–Na2SO4–NaNO3–H2O to the critical temperature of water; association equilibria
,”
J. Phys. Chem.
73
,
81
90
(
1969
).
195.
Yeatts
,
L. B.
and
Marshall
,
W. L.
, “
Solubility of calcium sulfate dihydrate and association equilibriums in several aqueous mixed electrolyte salt systems at 25°C
,”
J. Chem. Eng. Data
17
,
163
168
(
1972
).
196.
Ying
,
R.
,
Li
,
D.
,
Meng
,
L.
,
Deng
,
T.
, and
Guo
,
Y.
, “
Experimental and thermodynamic model study on solid and liquid equilibrium of ternary system MgBr2–MgSO4–H2O at 333.15 K
,”
J. Chem. Eng. Data
61
,
2624
2628
(
2016
).
197.
Yuan
,
M.
,
Prediction of Sulphate Scaling Tendency and Investigation of Barium and Strontium Sulphate Solid Solution Scale Formation
(
Heriot-Watt University
,
Edinburgh
,
1989
).
198.
Zdanovskii
,
A. B.
and
Vlasov
,
G. A.
, “
Solubility of the various modifications of calcium sulfate in H2SO4 solutions at 25 °C
,”
Zh. Neorg. Khim.
13
,
2747
2753
(
1968
).
199.
Zen
,
E.-A.
, “
Solubility measurements in the system CaSO4–NaCl–H2O at 35, 50 and 70 °C and one atmosphere pressure
,”
J. Petrol.
6
,
124
164
(
1965
).
200.
Zhen-Wu
,
B. Y.
,
Dideriksen
,
K.
,
Belova
,
D. A.
,
Raahauge
,
P. J.
, and
Stipp
,
S. L. S.
, “
A comparison of standard thermodynamic properties and solubility data for barite, Ba2+(aq) and SO42−(aq)
,”
Mineral. Mag.
78
,
1505
1515
(
2014
).

Supplementary Material

You do not currently have access to this content.