Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.

8.
1.
Ananthaswamy
,
J.
and
Atkinson
,
G.
, “
Thermodynamics of concentrated electrolyte mixtures. 1. Activity coefficients in aqueous sodium chloride–calcium chloride at 25 °C
,”
J. Solution Chem.
11
,
509
527
(
1982
).
2.
Atkinson
,
G.
,
Raju
,
K.
, and
Howell
,
R. D.
, “
The thermodynamics of scale prediction
,” in
SPE International Symposium on Oilfield Chemistry, Anaheim, CA, 20-22 February 1991
(
Society of Petroleum Engineers
,
Anaheim, CA
,
1991
), pp.
209
215
.
3.
Balarew
,
C.
,
Christov
,
C.
,
Valyashko
,
V.
, and
Petrenko
,
S.
, “
Thermodynamics of formation of carnallite type double salts
,”
J. Solution Chem.
22
,
173
181
(
1993
).
4.
Benrath
,
A.
, “
Über die Löslichkeit von Salzen und Salzgemischen in Wasser bei temperaturen oberhalb von 100°. III
,”
Z. Anorg. Chem.
247
,
147
160
(
1941
).
5.
Bergman
,
A. G.
and
Vlasov
,
N. A.
, “
Polytherm of the ternary system H2O-KCl-KBr
,”
Dokl. AN SSSR
36
,
64
68
(
1942
).
6.
Bottomley
,
D.
,
Gregoire
,
D.
, and
Raven
,
K.
, “
Saline groundwaters in the Canadian shield. Geochemical and isotopic evidence for a residual evaporite brine component
,”
Geochim. Cosmochim. Acta
58
,
1483
1498
(
1994
).
7.
Christov
,
C.
, “
Thermodynamics of the aqueous sodium and magnesium bromide system at the temperatures 273.15 K and 298.15 K
,”
Calphad
20
,
501
509
(
1996
).
8.
Christov
,
C.
, “
Thermodynamic study of quaternary systems with participation of ammonium and sodium alums and chromium alums
,”
Calphad
26
,
341
352
(
2002
).
9.
Christov
,
C.
, “
An isopiestic study of aqueous NaBr and KBr at 50 °C: Chemical equilibrium model of solution behavior and solubility in the NaBr–H2O, KBr–H2O and Na–K–Br–H2O systems to high concentration and temperature
,”
Geochim. Cosmochim. Acta
71
,
3557
3569
(
2007
).
10.
Christov
,
C.
, “
Isopiestic investigation of the osmotic coefficients of aqueous CaBr2 and study of bromide salt solubility in the NaBr–CaBr2–H2O system at 50 °C: Thermodynamic model of solution behavior and solid–liquid equilibria in the CaBr2–H2O, and NaBr–CaBr2–H2O systems to high concentration and temperature
,”
Calphad
35
,
42
53
(
2011a
).
11.
Christov
,
C.
, “
Isopiestic investigation of the osmotic coefficients of MgBr2(aq) and study of bromide salts solubility in the (m1KBr + m2MgBr2)(aq) system at T = 323.15 K. Thermodynamic model of solution behaviour and (solid + liquid) equilibria in the MgBr2(aq), and (m1KBr + m2MgBr2)(aq) systems to high concentration and temperature
,”
J. Chem. Thermodyn.
43
,
344
353
(
2011b
).
12.
Christov
,
C.
, “
Study of bromide salts solubility in the (m1KBr + m2CaBr2) (aq) system at T = 323.15 K. Thermodynamic model of solution behaviour and (solid + liquid) equilibria in the ternaries (m1KBr + m2CaBr2)(aq), and (m1MgBr2 + m2CaBr2)(aq), and in the quinary (Na + K + Mg + Ca + Br + H2O) systems to high concentration and temperature
,”
J. Chem. Thermodyn.
55
,
7
22
(
2012
).
13.
Christov
,
C.
,
Velikova
,
S.
, and
Ivanova
,
K.
, “
Study of (m1LiX + m2CaX2)(aq) where mi denotes molality and X denotes Cl, or Br at the temperature 298.15 K
,”
J. Chem. Thermodyn.
32
,
1505
1512
(
2000
).
14.
de Lima
,
M. C. P.
and
Pitzer
,
K. S.
, “
Thermodynamics of saturated aqueous solutions including mixtures of NaCl, KCl and CsCl
,”
J. Solution Chem.
12
,
171
185
(
1983a
).
15.
de Lima
,
M. C. P.
and
Pitzer
,
K. S.
, “
Thermodynamics of saturated electrolyte mixtures of NaCl with Na2SO4 and with MgCl2
,”
J. Solution Chem.
12
,
187
199
(
1983b
).
16.
Eddy
,
R. D.
and
Menzies
,
A. W. C.
, “
The solubilities of certain inorganic compounds in ordinary water and in deuterium water
,”
J. Phys. Chem.
44
,
207
235
(
1940
).
17.
Esteso
,
M. A.
,
Hernandez-Luis
,
F.
,
Gonzalez-Diaz
,
O.
,
Fernandez-Merida
,
L.
,
Khoo
,
S. K.
, and
Lim
,
T. K.
, “
Comparative analysis of the activity coefficients for the system NaBr–NaFormate + H2O at 25 °C by the methods of Scatchard, Pitzer, and Lim
,”
J. Solution Chem.
20
,
417
429
(
1991
).
18.
Garrels
,
R. M.
and
Thompson
,
M. E.
, “
A chemical model for seawater at 25 °C and one atmosphere total pressure
,”
Am. J. Sci.
260
,
57
66
(
1962
).
19.
Getman
,
F. H.
, “
Equilibrium in the system H2O–MgBr2
,”
Rec. Trav. Chim.
54
,
866
872
(
1935
).
20.
Goldberg
,
R. N.
and
Nutall
,
R. L.
, “
Evaluated activity and osmotic coefficients for aqueous solutions: The alkaline earth metal halides
,”
J. Phys. Chem. Ref. Data
7
,
263
(
1978
).
21.
Greenberg
,
J. P.
and
Moller
,
N.
, “
The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250 °C
,”
Geochim. Cosmochim. Acta
53
,
2503
2518
(
1989
).
22.
Harvey
,
A. H.
and
Salomon
,
M.
, “
Editorial: IUPAC-NIST solubility data series
,”
J. Phys. Chem. Ref. Data
39
,
020401
(
2010
).
23.
Harvie
,
C. E.
and
Weare
,
J. H.
, “
The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25 °C
,”
Geochim. Cosmochim. Acta
44
,
981
997
(
1980
).
24.
Harvie
,
C. E.
,
Weare
,
J. H.
,
Hardie
,
L. A.
, and
Eugster
,
H. P.
, “
Evaporation of seawater, calculated mineral sequences
,”
Science
208
,
498
500
(
1980
).
25.
Harvie
,
C. E.
,
Eugster
,
H. P.
, and
Weare
,
J. H.
, “
Mineral equilibria in the six component seawater system Na-K-Mg-Ca-Cl-SO4-H2O system at 25 °C. II. Compositions of the saturated solutions
,”
Geochim. Cosmochim. Acta
46
,
1603
1618
(
1982
).
26.
Harvie
,
C. E.
,
Moller
,
N.
, and
Weare
,
J. H.
, “
The prediction of mineral solubilities in natural waters, the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25 °C
,”
Geochim. Cosmochim. Acta
48
,
723
751
(
1984
).
27.
Helgeson
,
H. C.
, “
Thermodynamics of hydrothermal systems at elevated temperatures and pressures
,”
Am. J. Sci.
267
,
729
804
(
1969
).
28.
Hennings
,
E.
,
Schmidt
,
H.
, and
Voigt
,
W.
, “
Crystal structures of hydrates of simple inorganic salts. I. Water-rich magnesium halide hydrates MgCl2·8H2O, MgCl2·12H2O, MgBr2·6H2O, MgBr2·9H2O, MgI2·8H2O and MgI2·9H2O
,”
Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
69
,
1292
1300
(
2013
).
29.
Hennings
,
E.
,
Schmidt
,
H.
, and
Voigt
,
W.
, “
Crystal structures of hydrates of simple inorganic salts. II. Water-rich calcium bromide and iodide hydrates: CaBr2·9H2O, CaI2·8H2O, CaI2·7H2O and CaI2·6.5H2O
,”
Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
70
,
876
881
(
2014
).
30.
Hu
,
J.
,
Sang
,
S.
,
Zhou
,
M.
, and
Huang
,
W.
, “
Phase equilibria in the ternary systems KBr-MgBr2-H2O and NaBr-MgBr2-H2O at 348.15 K
,”
Fluid Phase Equilib.
392
,
127
131
(
2015a
).
31.
Hu
,
J.-X.
,
Sang
,
S.-H.
, and
Liu
,
Q.-Z.
, “
Solid-liquid equilibria in the ternary systems KBr-CaBr2-H2O and NaBr-CaBr2-H2O at 348 K
,”
J. Chem. Eng. Data
60
,
993
998
(
2015b
).
32.
Kesner
,
M.
,
Bromine and Bromine Compounds From the Dead Sea, Israel Products in the Service of People
(
The Weizmann Institute of Science
,
Israel
,
1999
).
33.
Khoo
,
K. H.
,
Lim
,
T.-K.
, and
Chan
,
C.-Y.
, “
Ionic interactions in the system HBr + BaBr2 + H2O at 25 °C
,”
J. Solution Chem.
8
,
277
282
(
1979a
).
34.
Khoo
,
K. H.
,
Lim
,
T.-K.
, and
Chan
,
C.-Y.
, “
Activity coefficients for the system HBr + CaBr2 + H2O at 298.15 K
,”
J. Chem. Soc., Faraday Trans. 1
75
,
1067
1072
(
1979b
).
35.
Kim
,
H.-T.
and
Frederick
,
W. J.
, Jr.
, “
Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 °C. 1. Single salt parameters
,”
J. Chem. Eng. Data
33
,
177
184
(
1988a
).
36.
Kim
,
H.-T.
and
Frederick
,
W. J.
, Jr.
, “
Evaluation of Pitzer ion interaction parameters of aqueous mixed electrolyte solutions at 25 °C. 2. Ternary mixing parameters
,”
J. Chem. Eng. Data
33
,
278
283
(
1988b
).
37.
Kremers
,
R.
, “
Ueber die Loslichkeitscurven einiger Salzatome und die Siedepunkte gesattigter Salzlosungen
,”
Ann. Phys. Chem.
99
,
25
57
(
1856
).
38.
Krumgalz
,
B. S.
, “
Ion interaction approach to geochemical aspects of the Dead Sea
,” in
The Dead Sea. The Lake and Its Setting
, edited by
Niemi
,
T. M.
,
Ben-Avraham
,
Z.
, and
Gat
,
J. R.
(
Oxford University Press
,
New York, Oxford
,
1997
), pp. 145-160.
39.
Krumgalz
,
B. S.
, “
Application of the Pitzer ion interaction model to natural hypersaline brines
,”
J. Mol. Liq.
91
,
3
19
(
2001
).
40.
Krumgalz
,
B. S.
, “
Temperatures dependence of mineral solubility in water. Part I. Alkaline and alkaline earth chlorides
,”
J. Phys. Chem. Ref. Data
46
,
043101
(
2017
).
41.
Krumgalz
,
B. S.
and
Millero
,
F. J.
, “
Physico-chemical study of the Dead Sea waters. I. Activity coefficients of major ions in Dead Sea water
,”
Mar. Chem.
11
,
209
222
(
1982
).
42.
Krumgalz
,
B. S.
and
Millero
,
F. J.
, “
Physico-chemical study of the Dead Sea waters. III. On gypsum saturation in Dead Sea waters and their mixtures with Mediterranean Sea water
,”
Mar. Chem.
13
,
127
139
(
1983
).
43.
Krumgalz
,
B. S.
and
Millero
,
F. J.
, “
Halite solubility in Dead Sea waters
,”
Mar. Chem.
27
,
219
233
(
1989
).
44.
Krumgalz
,
B. S.
,
Hecht
,
A.
,
Starinsky
,
A.
, and
Katz
,
A.
, “
Thermodynamic constraints on Dead Sea evaporation, can the Dead Sea dry up?
,”
Chem. Geol.
165
,
1
11
(
2000
).
45.
Krumgalz
,
B. S.
,
Magdal
,
E.
, and
Starinsky
,
A.
, “
The evolution of a chloride sedimentary sequence - simulated evaporation of the Dead Sea Lake
,”
Isr. J. Earth Sci.
51
,
235
267
(
2002
).
46.
Physikalish Chemische Tabellen
, edited by
Landolt
,
H.
and
Bornstein
,
R.
(
Verlag von Julius Springer
,
Berlin
,
1894
).
47.
Leybourne
,
M.
and
Goodfellow
,
W.
, “
Br/Cl ratios and O, H, C, and B isotopic constraints on the origin of saline waters from eastern Canada
,”
Geochim. Cosmochim. Acta
71
2209
2223
(
2007
).
48.
Li
,
D.
,
Huang
,
B.
,
Meng
,
L.
, and
Xu
,
Q.
, “
Solubility measurement and solid-liquid equilibrium model for the ternary system MgBr2 + MgSO4 + H2O at 288.15 K
,”
Braz. J. Chem. Eng.
31
,
561
570
(
2014
).
49.
Lim
,
T.-K.
,
Khoo
,
K. H.
, and
Chan
,
C.-Y.
, “
Activity coefficients for the system HBr + SrBr2 + H2O at 25 °C
,”
J. Solution Chem.
9
,
785
789
(
1980
).
50.
Solubilities, Inorganic, and Metal-Organic Compounds. A Compilation of Solubility Data From the Periodical Literature
, 4th ed., edited by
Linke
,
W. F.
(
American Chemical Society
,
Washington, D.C.
,
1958
), Vol. I (A Revision and Continuation of the Compilation Originated by A. Seidell).
51.
Solubilities, Inorganic, and Metal-Organic Compounds. A Compilation of Solubility Data From the Periodical Literature
, 4th ed., edited by
Linke
,
W. F.
(
American Chemical Society
,
Washington, D.C.
,
1965
), Vol. II (A Revision and Continuation of the Compilation Originated by A. Seidell).
52.
Lodemann
,
L.
,
Fritz
,
P.
,
Volf
,
M.
,
Ivanovich
,
M.
,
Hansen
,
B.
, and
Nolte
,
E.
, “
On the origin of saline fluids in the KTB (continental deep drilling project of Germany)
,”
Appl. Geochem.
12
,
831
849
(
1997
).
53.
Macaskill
,
J. B.
,
White
,
D. R.
,
Robinson
,
R. A.
, and
Bates
,
R. G.
, “
Isopiestic measurements on aqueous mixtures of sodium chloride and strontium chloride
,”
J. Solution Chem.
7
,
339
347
(
1978
).
54.
Macaskill
,
J. B.
and
Bates
,
R. G.
, “
Osmotic coefficients and activity coefficients of aqueous hydrobromic acid solutions at 25 °C
,”
J. Solution Chem.
12
,
607
619
(
1983
).
55.
Meng
,
L. Z.
,
Deng
,
T. L.
,
Guo
,
Y. F.
,
Li
,
D.
, and
Yang
,
L.
, “
Measurement and thermodynamic model study on solid + liquid equilibria and physicochemical properties of the ternary system MgBr2 + MgSO4 + H2O at 323.15 K.
Fluid Phase Equilib.
342
,
88
94
(
2013
).
56.
Meng
,
L.
,
Li
,
D.
,
Deng
,
T.
,
Guo
,
Y.
,
Ma
,
C.
, and
Zhu
,
Y.
, “
Measurement and thermodynamic modeling study on the solid and liquid equilibrium of ternary system NaBr-CaBr2-H2O at 288.15 K
,”
J. Chem. Eng. Data
59
,
4193
4199
(
2014
).
57.
Menschutkin
,
B. N.
, “
Über die Löslichkeit der Hydrate des Broms- und Jodmagnesiums und über die Verbindungen dieser Salze mit Anilin und Phenylhydrazin
,”
Z. Anorg. Chem.
52
,
152
163
(
1907
).
58.
Meusser
,
A.
, “
Zur Löslichkeit von Kaliumchlorid,- bromid,- jodid im Wasser
,”
Z. Anorg. Chem.
44
,
79
80
(
1905
).
59.
Milikan
,
J.
, “
Die Oxyhaloide der alkalischen Erden. Gleichgewichte in ternaren systemen. I
,”
Z. Phys. Chem.
92
,
59
80
(
1917
).
60.
Pabalan
,
R. T.
and
Pitzer
,
K. S.
, “
Mineral solubilities in electrolyte solutions
,” in
Activity Coefficients in Electrolyte Solutions
, 2nd ed., edited by
Pitzer
,
K. S.
(
CRC Press
,
Boca Raton, FL.
,
1991
), pp. 435-490.
61.
Reference Book of Experimental Data of the Solubility of Multicomponent Aqueous-Salt Systems
, 2nd ed., edited by
Pel’sh
,
A. D.
(
Khimiya
,
Leningrad
,
1973
).
62.
Pérez-Villaseñor
,
F.
and
Iglesias-Silva
,
G. A.
, “
Prediction of osmotic and activity coefficients using a modified Pitzer equation for multicomponent strong electrolyte systems at 298 K
,”
Ind. Eng. Chem. Res.
42
,
1087
1092
(
2003
).
63.
Phutela
,
R. C.
and
Pitzer
,
K. S.
, “
Thermodynamics of aqueous calcium chloride
,”
J. Solution Chem.
12
,
201
207
(
1983
).
64.
Pitzer
,
K. S.
, “
Thermodynamics of electrolytes. I. Theoretical basis and general equations
,”
J. Phys. Chem.
77
,
268
277
(
1973
).
65.
Pitzer
,
K. S.
, “
Theoretical considerations of solubility with emphasis on mixed aqueous electrolytes
,”
Pure Appl. Chem.
58
,
1599
1610
(
1986
).
66.
Pitzer
,
K. S.
, “
Theory, ion interaction approach
,” in
Activity Coefficients in Electrolyte Solutions
, edited by
Pytkowicz
,
R. M.
(
CRC Press
,
Boca Raton, FL
,
1979
), Vol. 1, pp.
157
208
.
67.
Pitzer
,
K. S.
, “
Ion interaction approach, theory and data correlation
,” in
Activity Coefficients in Electrolyte Solutions
, 2nd ed., edited by
Pitzer
,
K. S.
(
CRC Press
,
Boca Raton, FL
,
1991
), pp. 75-153.
68.
Pitzer
,
K. S.
and
Mayorga
,
G.
, “
Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent
,”
J. Phys. Chem.
77
,
2300
2308
(
1973
).
69.
Plummer
,
L. N.
,
Parkhurst
,
D. L.
,
Fleming
,
G. W.
, and
Dunkle
,
S. A.
, U.S. geological survey, water resources investigation, Report No. 88–44153,
Reston, Virginia
,
1988
.
70.
Rard
,
J. A.
and
Archer
,
D. G.
Isopiestic investigation of the osmotic and activity coefficients of aqueous NaBr and the solubility of NaBr·2H2O(cr) at 298.15 K: Thermodynamic properties of the NaBr + H2O system over wide ranges of temperature and pressure
,”
J. Chem. Eng. Data
40
,
170
185
(
1995
).
71.
Rard
,
J. A.
and
Miller
,
D. G.
, “
Isopiestic determination of the osmotic and activity coefficients of aqueous magnesium chloride solutions at 25 °C
,”
J. Chem. Eng. Data
26
,
38
43
(
1981
).
72.
Reddy
,
D. C.
,
Rao
,
N. K.
, and
Ananthaswamy
,
J.
, “
Thermodynamics of electrolyte solutions: Electromotive force studies on aqueous solutions of KCl in KCl+MgCl2+H2O system at 25 °C
,”
Curr. Sci.
57
,
287
290
(
1988
).
73.
Richards
,
T. W.
and
Yngve
,
V.
, “
The transition temperatures of strontium chloride and strontium bromide as fixed points in thermometry
,”
J. Am. Chem. Soc.
40
,
89
95
(
1918
).
74.
Robie
,
R. A.
,
Hemingway
,
B. S.
, and
Fisher
,
Y. L.
,
Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures
, USGS Bulletin No. 1452 (
United States Government Printing Office
,
Washington
,
1978
), pp. 456.
75.
Roy
,
R. N.
,
Wood
,
M. D.
,
Johnson
,
D. A.
,
Roy
,
L. N.
, and
Gibbons
,
J. J.
, “
Activity coefficients for (hydrogen bromide + calcium bromide + water) at various temperatures. Application of Pitzer’s equations
,”
J. Chem. Thermodyn.
19
,
307
316
(
1987
).
76.
Roy
,
R. N.
,
Lawson
,
M. L.
,
Nelson
,
E.
,
Roy
,
L. N.
, and
Johnson
,
D. A.
, “
Activity coefficients in (hydrogen bromide + magnesium bromide) (aq) at several temperatures. Application of Pitzer’s equations
,”
J. Chem. Thermodyn.
22
,
727
738
(
1990
).
77.
Roy
,
R. N.
,
Roy
,
L. N.
,
Ingle
,
A. L.
,
Davis
,
W. B.
,
Larkin
,
D. W.
,
Johnson
,
D. A.
,
Hnath
,
E. J.
, and
Millero
,
F.
, “
The study of activity coefficients of (hydrogen bromide + strontium bromide) (aq) using Pitzer’s formalism
,”
J. Chem. Thermodyn.
24
,
425
438
(
1992
).
78.
Roy
,
R. N.
,
Roy
,
L. N.
,
Ingle
,
A. L.
,
Davis
,
W. B.
,
Larkin
,
D. W.
,
Johnson
,
D. A.
,
Hnath
,
E. J.
, and
Millero
,
F.
, “
The thermodynamic behavior of hydrogen bromide in aqueous solutions of barium bromide
,”
J. Chem. Thermodyn.
25
,
155
172
(
1993
).
79.
Sang
,
S. H.
,
Sun
,
M. L.
,
Li
,
H.
,
Zhang
,
X.
, and
Zhang
,
K. J.
, “
A study on equilibria of the quaternary system Na+, K+//Br, SO42− –H2O at 323 K
,”
Chin. J. Inorg. Chem.
27
,
845
849
(
2011
).
80.
Scott
,
A. F.
and
Durham
,
E. J.
, “
Studies in the solubilities of the soluble electrolytes. III. The solubilities and densities of saturated solutions of the bromides and iodides of sodium and potassium between 0 °C and 92 °C
,”
J. Phys. Chem.
34
,
1424
1438
(
1930
).
81.
Silvester
,
L. F.
and
Pitzer
,
K. S.
, “
Thermodynamics of electrolytes. X. Enthalpy and the effect of temperature on the activity coefficients
,”
J. Solution Chem.
7
,
327
337
(
1978
).
82.
Simoes
,
M. C.
,
Hughes
,
K. J.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashanian
,
M.
, “
Estimation of the Pitzer parameters for 1-1, 2-1, 3-1, 4-1, and 2-2 single electrolytes at 25 °C
,”
J. Chem. Eng. Data
61
,
2536
2554
(
2016
).
83.
Simonson
,
J. M.
,
Roy
,
R. N.
,
Roy
,
L. N.
, and
Johnson
,
D. A.
, “
The thermodynamics of aqueous borate solutions. I. Mixtures of boric acid with sodium or potassium borate and chloride
,”
J. Solution Chem.
16
,
791
803
(
1987
).
84.
Spencer
,
R. J.
,
Moller
,
N.
, and
Weare
,
J. H.
, “
The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H2O system at temperatures below 25 °C
,”
Geochim. Cosmochim. Acta
54
,
575
590
(
1990
).
85.
Tialowska-Mocharla
,
H.
and
Atkinson
,
G.
, “
Thermodynamics of concentrated electrolyte mixtures. 6. Activity coefficients of aqueous CaCl2-CaBr2 mixtures at 25 °C
,”
J. Phys. Chem.
89
,
4884
4887
(
1985
).
86.
Tyrrell
,
H. J. V.
and
Richards
,
J.
, “
The ternary system BaBr2-HgBr2-H2O at 25°, 10.4°, and 4.5°
,”
J. Chem. Soc.
1953
,
3812
3815
(
1953
).
87.
Venkateswarlu
,
C.
and
Ananthaswamy
,
J.
, “
Thermodynamics of electrolyte solutions: activity coefficients of NaCl in NaCl+ MnCl2+H2O system at 25 °C
,”
Indian J. Chem.
27A
,
768
771
(
1988
).
88.
Vlasov
,
N. A.
and
Bergman
,
A. G.
, “
Polytherm of the ternary system sodium bromide - potassium bromide - water at the temperature range from the full freezing point up to +50°C
,”
Dokl. AN SSSR
39
,
148
151
(
1943
).
89.
Voigt
,
W.
, “
What we know and still not know about oceanic salts
,”
Pure Appl. Chem.
87
,
1099
1126
(
2015
).
90.
Yan
,
W.
, “
Measurement and correlation of activity coefficients for (sodium bromide + lithium bromide + water) at T = 298.15 K
,”
J. Chem. Thermodyn.
32
,
631
637
(
2000
).
91.
Yan
,
W.
and
Han
,
S.
, “
Activity and osmotic coefficients for the ternary system (sodium bromide + tetramethylammonium bromide + water) at T =298.15 K
,”
J. Chem. Thermodyn.
30
,
743
749
(
1998
).
92.
Yan
,
W.
,
Zhang
,
R.
, and
Han
,
S.
, “
Thermodynamic properties of the ternary system potassium bromide + lithium bromide + water at 25 °C
,”
J. Solution Chem.
30
,
193
200
(
2001
).
93.
Ying
,
R.
,
Li
,
D.
,
Meng
,
L.
,
Deng
,
T.
, and
Guo
,
Y.
, “
Experimental and thermodynamic model study on solid and liquid equilibrium of ternary system MgBr2–MgSO4–H2O at 333.15 K
,”
J. Chem. Eng. Data
61
,
2624
2628
(
2016
).
94.
Zheng
,
X. Y.
,
Tang
,
Y.
, and
Xu
,
C.
,
Tibet Saline Lake
(
Science Press
,
Beijing, China
,
1988
).

Supplementary Material

You do not currently have access to this content.