Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.
References
1.
Ananthaswamy
, J.
and Atkinson
, G.
, “Thermodynamics of concentrated electrolyte mixtures. 1. Activity coefficients in aqueous sodium chloride–calcium chloride at 25 °C
,” J. Solution Chem.
11
, 509
–527
(1982
).2.
Atkinson
, G.
, Raju
, K.
, and Howell
, R. D.
, “The thermodynamics of scale prediction
,” in SPE International Symposium on Oilfield Chemistry, Anaheim, CA, 20-22 February 1991
(Society of Petroleum Engineers
, Anaheim, CA
, 1991
), pp. 209
–215
.3.
Balarew
, C.
, Christov
, C.
, Valyashko
, V.
, and Petrenko
, S.
, “Thermodynamics of formation of carnallite type double salts
,” J. Solution Chem.
22
, 173
–181
(1993
).4.
Benrath
, A.
, “Über die Löslichkeit von Salzen und Salzgemischen in Wasser bei temperaturen oberhalb von 100°. III
,” Z. Anorg. Chem.
247
, 147
–160
(1941
).5.
Bergman
, A. G.
and Vlasov
, N. A.
, “Polytherm of the ternary system H2O-KCl-KBr
,” Dokl. AN SSSR
36
, 64
–68
(1942
).6.
Bottomley
, D.
, Gregoire
, D.
, and Raven
, K.
, “Saline groundwaters in the Canadian shield. Geochemical and isotopic evidence for a residual evaporite brine component
,” Geochim. Cosmochim. Acta
58
, 1483
–1498
(1994
).7.
Christov
, C.
, “Thermodynamics of the aqueous sodium and magnesium bromide system at the temperatures 273.15 K and 298.15 K
,” Calphad
20
, 501
–509
(1996
).8.
Christov
, C.
, “Thermodynamic study of quaternary systems with participation of ammonium and sodium alums and chromium alums
,” Calphad
26
, 341
–352
(2002
).9.
Christov
, C.
, “An isopiestic study of aqueous NaBr and KBr at 50 °C: Chemical equilibrium model of solution behavior and solubility in the NaBr–H2O, KBr–H2O and Na–K–Br–H2O systems to high concentration and temperature
,” Geochim. Cosmochim. Acta
71
, 3557
–3569
(2007
).10.
Christov
, C.
, “Isopiestic investigation of the osmotic coefficients of aqueous CaBr2 and study of bromide salt solubility in the NaBr–CaBr2–H2O system at 50 °C: Thermodynamic model of solution behavior and solid–liquid equilibria in the CaBr2–H2O, and NaBr–CaBr2–H2O systems to high concentration and temperature
,” Calphad
35
, 42
–53
(2011a
).11.
Christov
, C.
, “Isopiestic investigation of the osmotic coefficients of MgBr2(aq) and study of bromide salts solubility in the (m1KBr + m2MgBr2)(aq) system at T = 323.15 K. Thermodynamic model of solution behaviour and (solid + liquid) equilibria in the MgBr2(aq), and (m1KBr + m2MgBr2)(aq) systems to high concentration and temperature
,” J. Chem. Thermodyn.
43
, 344
–353
(2011b
).12.
Christov
, C.
, “Study of bromide salts solubility in the (m1KBr + m2CaBr2) (aq) system at T = 323.15 K. Thermodynamic model of solution behaviour and (solid + liquid) equilibria in the ternaries (m1KBr + m2CaBr2)(aq), and (m1MgBr2 + m2CaBr2)(aq), and in the quinary (Na + K + Mg + Ca + Br + H2O) systems to high concentration and temperature
,” J. Chem. Thermodyn.
55
, 7
–22
(2012
).13.
Christov
, C.
, Velikova
, S.
, and Ivanova
, K.
, “Study of (m1LiX + m2CaX2)(aq) where mi denotes molality and X denotes Cl, or Br at the temperature 298.15 K
,” J. Chem. Thermodyn.
32
, 1505
–1512
(2000
).14.
de Lima
, M. C. P.
and Pitzer
, K. S.
, “Thermodynamics of saturated aqueous solutions including mixtures of NaCl, KCl and CsCl
,” J. Solution Chem.
12
, 171
–185
(1983a
).15.
de Lima
, M. C. P.
and Pitzer
, K. S.
, “Thermodynamics of saturated electrolyte mixtures of NaCl with Na2SO4 and with MgCl2
,” J. Solution Chem.
12
, 187
–199
(1983b
).16.
Eddy
, R. D.
and Menzies
, A. W. C.
, “The solubilities of certain inorganic compounds in ordinary water and in deuterium water
,” J. Phys. Chem.
44
, 207
–235
(1940
).17.
Esteso
, M. A.
, Hernandez-Luis
, F.
, Gonzalez-Diaz
, O.
, Fernandez-Merida
, L.
, Khoo
, S. K.
, and Lim
, T. K.
, “Comparative analysis of the activity coefficients for the system NaBr–NaFormate + H2O at 25 °C by the methods of Scatchard, Pitzer, and Lim
,” J. Solution Chem.
20
, 417
–429
(1991
).18.
Garrels
, R. M.
and Thompson
, M. E.
, “A chemical model for seawater at 25 °C and one atmosphere total pressure
,” Am. J. Sci.
260
, 57
–66
(1962
).19.
Getman
, F. H.
, “Equilibrium in the system H2O–MgBr2
,” Rec. Trav. Chim.
54
, 866
–872
(1935
).20.
Goldberg
, R. N.
and Nutall
, R. L.
, “Evaluated activity and osmotic coefficients for aqueous solutions: The alkaline earth metal halides
,” J. Phys. Chem. Ref. Data
7
, 263
(1978
).21.
Greenberg
, J. P.
and Moller
, N.
, “The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250 °C
,” Geochim. Cosmochim. Acta
53
, 2503
–2518
(1989
).22.
Harvey
, A. H.
and Salomon
, M.
, “Editorial: IUPAC-NIST solubility data series
,” J. Phys. Chem. Ref. Data
39
, 020401
(2010
).23.
Harvie
, C. E.
and Weare
, J. H.
, “The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25 °C
,” Geochim. Cosmochim. Acta
44
, 981
–997
(1980
).24.
Harvie
, C. E.
, Weare
, J. H.
, Hardie
, L. A.
, and Eugster
, H. P.
, “Evaporation of seawater, calculated mineral sequences
,” Science
208
, 498
–500
(1980
).25.
Harvie
, C. E.
, Eugster
, H. P.
, and Weare
, J. H.
, “Mineral equilibria in the six component seawater system Na-K-Mg-Ca-Cl-SO4-H2O system at 25 °C. II. Compositions of the saturated solutions
,” Geochim. Cosmochim. Acta
46
, 1603
–1618
(1982
).26.
Harvie
, C. E.
, Moller
, N.
, and Weare
, J. H.
, “The prediction of mineral solubilities in natural waters, the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25 °C
,” Geochim. Cosmochim. Acta
48
, 723
–751
(1984
).27.
Helgeson
, H. C.
, “Thermodynamics of hydrothermal systems at elevated temperatures and pressures
,” Am. J. Sci.
267
, 729
–804
(1969
).28.
Hennings
, E.
, Schmidt
, H.
, and Voigt
, W.
, “Crystal structures of hydrates of simple inorganic salts. I. Water-rich magnesium halide hydrates MgCl2·8H2O, MgCl2·12H2O, MgBr2·6H2O, MgBr2·9H2O, MgI2·8H2O and MgI2·9H2O
,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
69
, 1292
–1300
(2013
).29.
Hennings
, E.
, Schmidt
, H.
, and Voigt
, W.
, “Crystal structures of hydrates of simple inorganic salts. II. Water-rich calcium bromide and iodide hydrates: CaBr2·9H2O, CaI2·8H2O, CaI2·7H2O and CaI2·6.5H2O
,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
70
, 876
–881
(2014
).30.
Hu
, J.
, Sang
, S.
, Zhou
, M.
, and Huang
, W.
, “Phase equilibria in the ternary systems KBr-MgBr2-H2O and NaBr-MgBr2-H2O at 348.15 K
,” Fluid Phase Equilib.
392
, 127
–131
(2015a
).31.
Hu
, J.-X.
, Sang
, S.-H.
, and Liu
, Q.-Z.
, “Solid-liquid equilibria in the ternary systems KBr-CaBr2-H2O and NaBr-CaBr2-H2O at 348 K
,” J. Chem. Eng. Data
60
, 993
−998
(2015b
).32.
Kesner
, M.
, Bromine and Bromine Compounds From the Dead Sea, Israel Products in the Service of People
(The Weizmann Institute of Science
, Israel
, 1999
).33.
Khoo
, K. H.
, Lim
, T.-K.
, and Chan
, C.-Y.
, “Ionic interactions in the system HBr + BaBr2 + H2O at 25 °C
,” J. Solution Chem.
8
, 277
–282
(1979a
).34.
Khoo
, K. H.
, Lim
, T.-K.
, and Chan
, C.-Y.
, “Activity coefficients for the system HBr + CaBr2 + H2O at 298.15 K
,” J. Chem. Soc., Faraday Trans. 1
75
, 1067
–1072
(1979b
).35.
Kim
, H.-T.
and Frederick
, W. J.
, Jr., “Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 °C. 1. Single salt parameters
,” J. Chem. Eng. Data
33
, 177
–184
(1988a
).36.
Kim
, H.-T.
and Frederick
, W. J.
, Jr., “Evaluation of Pitzer ion interaction parameters of aqueous mixed electrolyte solutions at 25 °C. 2. Ternary mixing parameters
,” J. Chem. Eng. Data
33
, 278
–283
(1988b
).37.
Kremers
, R.
, “Ueber die Loslichkeitscurven einiger Salzatome und die Siedepunkte gesattigter Salzlosungen
,” Ann. Phys. Chem.
99
, 25
–57
(1856
).38.
Krumgalz
, B. S.
, “Ion interaction approach to geochemical aspects of the Dead Sea
,” in The Dead Sea. The Lake and Its Setting
, edited by Niemi
, T. M.
, Ben-Avraham
, Z.
, and Gat
, J. R.
(Oxford University Press
, New York, Oxford
, 1997
), pp. 145-160.39.
Krumgalz
, B. S.
, “Application of the Pitzer ion interaction model to natural hypersaline brines
,” J. Mol. Liq.
91
, 3
–19
(2001
).40.
Krumgalz
, B. S.
, “Temperatures dependence of mineral solubility in water. Part I. Alkaline and alkaline earth chlorides
,” J. Phys. Chem. Ref. Data
46
, 043101
(2017
).41.
Krumgalz
, B. S.
and Millero
, F. J.
, “Physico-chemical study of the Dead Sea waters. I. Activity coefficients of major ions in Dead Sea water
,” Mar. Chem.
11
, 209
–222
(1982
).42.
Krumgalz
, B. S.
and Millero
, F. J.
, “Physico-chemical study of the Dead Sea waters. III. On gypsum saturation in Dead Sea waters and their mixtures with Mediterranean Sea water
,” Mar. Chem.
13
, 127
–139
(1983
).43.
Krumgalz
, B. S.
and Millero
, F. J.
, “Halite solubility in Dead Sea waters
,” Mar. Chem.
27
, 219
–233
(1989
).44.
Krumgalz
, B. S.
, Hecht
, A.
, Starinsky
, A.
, and Katz
, A.
, “Thermodynamic constraints on Dead Sea evaporation, can the Dead Sea dry up?
,” Chem. Geol.
165
, 1
–11
(2000
).45.
Krumgalz
, B. S.
, Magdal
, E.
, and Starinsky
, A.
, “The evolution of a chloride sedimentary sequence - simulated evaporation of the Dead Sea Lake
,” Isr. J. Earth Sci.
51
, 235
–267
(2002
).46.
Physikalish Chemische Tabellen
, edited by Landolt
, H.
and Bornstein
, R.
(Verlag von Julius Springer
, Berlin
, 1894
).47.
Leybourne
, M.
and Goodfellow
, W.
, “Br/Cl ratios and O, H, C, and B isotopic constraints on the origin of saline waters from eastern Canada
,” Geochim. Cosmochim. Acta
71
2209
–2223
(2007
).48.
Li
, D.
, Huang
, B.
, Meng
, L.
, and Xu
, Q.
, “Solubility measurement and solid-liquid equilibrium model for the ternary system MgBr2 + MgSO4 + H2O at 288.15 K
,” Braz. J. Chem. Eng.
31
, 561
–570
(2014
).49.
Lim
, T.-K.
, Khoo
, K. H.
, and Chan
, C.-Y.
, “Activity coefficients for the system HBr + SrBr2 + H2O at 25 °C
,” J. Solution Chem.
9
, 785
–789
(1980
).50.
Solubilities, Inorganic, and Metal-Organic Compounds. A Compilation of Solubility Data From the Periodical Literature
, 4th ed., edited by Linke
, W. F.
(American Chemical Society
, Washington, D.C.
, 1958
), Vol. I (A Revision and Continuation of the Compilation Originated by A. Seidell).51.
Solubilities, Inorganic, and Metal-Organic Compounds. A Compilation of Solubility Data From the Periodical Literature
, 4th ed., edited by Linke
, W. F.
(American Chemical Society
, Washington, D.C.
, 1965
), Vol. II (A Revision and Continuation of the Compilation Originated by A. Seidell).52.
Lodemann
, L.
, Fritz
, P.
, Volf
, M.
, Ivanovich
, M.
, Hansen
, B.
, and Nolte
, E.
, “On the origin of saline fluids in the KTB (continental deep drilling project of Germany)
,” Appl. Geochem.
12
, 831
–849
(1997
).53.
Macaskill
, J. B.
, White
, D. R.
, Robinson
, R. A.
, and Bates
, R. G.
, “Isopiestic measurements on aqueous mixtures of sodium chloride and strontium chloride
,” J. Solution Chem.
7
, 339
–347
(1978
).54.
Macaskill
, J. B.
and Bates
, R. G.
, “Osmotic coefficients and activity coefficients of aqueous hydrobromic acid solutions at 25 °C
,” J. Solution Chem.
12
, 607
–619
(1983
).55.
Meng
, L. Z.
, Deng
, T. L.
, Guo
, Y. F.
, Li
, D.
, and Yang
, L.
, “Measurement and thermodynamic model study on solid + liquid equilibria and physicochemical properties of the ternary system MgBr2 + MgSO4 + H2O at 323.15 K.
Fluid Phase Equilib.
342
, 88
–94
(2013
).56.
Meng
, L.
, Li
, D.
, Deng
, T.
, Guo
, Y.
, Ma
, C.
, and Zhu
, Y.
, “Measurement and thermodynamic modeling study on the solid and liquid equilibrium of ternary system NaBr-CaBr2-H2O at 288.15 K
,” J. Chem. Eng. Data
59
, 4193
–4199
(2014
).57.
Menschutkin
, B. N.
, “Über die Löslichkeit der Hydrate des Broms- und Jodmagnesiums und über die Verbindungen dieser Salze mit Anilin und Phenylhydrazin
,” Z. Anorg. Chem.
52
, 152
–163
(1907
).58.
Meusser
, A.
, “Zur Löslichkeit von Kaliumchlorid,- bromid,- jodid im Wasser
,” Z. Anorg. Chem.
44
, 79
–80
(1905
).59.
Milikan
, J.
, “Die Oxyhaloide der alkalischen Erden. Gleichgewichte in ternaren systemen. I
,” Z. Phys. Chem.
92
, 59
–80
(1917
).60.
Pabalan
, R. T.
and Pitzer
, K. S.
, “Mineral solubilities in electrolyte solutions
,” in Activity Coefficients in Electrolyte Solutions
, 2nd ed., edited by Pitzer
, K. S.
(CRC Press
, Boca Raton, FL.
, 1991
), pp. 435-490.61.
Reference Book of Experimental Data of the Solubility of Multicomponent Aqueous-Salt Systems
, 2nd ed., edited by Pel’sh
, A. D.
(Khimiya
, Leningrad
, 1973
).62.
Pérez-Villaseñor
, F.
and Iglesias-Silva
, G. A.
, “Prediction of osmotic and activity coefficients using a modified Pitzer equation for multicomponent strong electrolyte systems at 298 K
,” Ind. Eng. Chem. Res.
42
, 1087
–1092
(2003
).63.
Phutela
, R. C.
and Pitzer
, K. S.
, “Thermodynamics of aqueous calcium chloride
,” J. Solution Chem.
12
, 201
–207
(1983
).64.
Pitzer
, K. S.
, “Thermodynamics of electrolytes. I. Theoretical basis and general equations
,” J. Phys. Chem.
77
, 268
–277
(1973
).65.
Pitzer
, K. S.
, “Theoretical considerations of solubility with emphasis on mixed aqueous electrolytes
,” Pure Appl. Chem.
58
, 1599
–1610
(1986
).66.
Pitzer
, K. S.
, “Theory, ion interaction approach
,” in Activity Coefficients in Electrolyte Solutions
, edited by Pytkowicz
, R. M.
(CRC Press
, Boca Raton, FL
, 1979
), Vol. 1, pp. 157
–208
.67.
Pitzer
, K. S.
, “Ion interaction approach, theory and data correlation
,” in Activity Coefficients in Electrolyte Solutions
, 2nd ed., edited by Pitzer
, K. S.
(CRC Press
, Boca Raton, FL
, 1991
), pp. 75-153.68.
Pitzer
, K. S.
and Mayorga
, G.
, “Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent
,” J. Phys. Chem.
77
, 2300
–2308
(1973
).69.
Plummer
, L. N.
, Parkhurst
, D. L.
, Fleming
, G. W.
, and Dunkle
, S. A.
, U.S. geological survey, water resources investigation, Report No. 88–44153, Reston, Virginia
, 1988
.70.
Rard
, J. A.
and Archer
, D. G.
“Isopiestic investigation of the osmotic and activity coefficients of aqueous NaBr and the solubility of NaBr·2H2O(cr) at 298.15 K: Thermodynamic properties of the NaBr + H2O system over wide ranges of temperature and pressure
,” J. Chem. Eng. Data
40
, 170
–185
(1995
).71.
Rard
, J. A.
and Miller
, D. G.
, “Isopiestic determination of the osmotic and activity coefficients of aqueous magnesium chloride solutions at 25 °C
,” J. Chem. Eng. Data
26
, 38
–43
(1981
).72.
Reddy
, D. C.
, Rao
, N. K.
, and Ananthaswamy
, J.
, “Thermodynamics of electrolyte solutions: Electromotive force studies on aqueous solutions of KCl in KCl+MgCl2+H2O system at 25 °C
,” Curr. Sci.
57
, 287
–290
(1988
).73.
Richards
, T. W.
and Yngve
, V.
, “The transition temperatures of strontium chloride and strontium bromide as fixed points in thermometry
,” J. Am. Chem. Soc.
40
, 89
–95
(1918
).74.
Robie
, R. A.
, Hemingway
, B. S.
, and Fisher
, Y. L.
, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures
, USGS Bulletin No. 1452 (United States Government Printing Office
, Washington
, 1978
), pp. 456.75.
Roy
, R. N.
, Wood
, M. D.
, Johnson
, D. A.
, Roy
, L. N.
, and Gibbons
, J. J.
, “Activity coefficients for (hydrogen bromide + calcium bromide + water) at various temperatures. Application of Pitzer’s equations
,” J. Chem. Thermodyn.
19
, 307
–316
(1987
).76.
Roy
, R. N.
, Lawson
, M. L.
, Nelson
, E.
, Roy
, L. N.
, and Johnson
, D. A.
, “Activity coefficients in (hydrogen bromide + magnesium bromide) (aq) at several temperatures. Application of Pitzer’s equations
,” J. Chem. Thermodyn.
22
, 727
–738
(1990
).77.
Roy
, R. N.
, Roy
, L. N.
, Ingle
, A. L.
, Davis
, W. B.
, Larkin
, D. W.
, Johnson
, D. A.
, Hnath
, E. J.
, and Millero
, F.
, “The study of activity coefficients of (hydrogen bromide + strontium bromide) (aq) using Pitzer’s formalism
,” J. Chem. Thermodyn.
24
, 425
–438
(1992
).78.
Roy
, R. N.
, Roy
, L. N.
, Ingle
, A. L.
, Davis
, W. B.
, Larkin
, D. W.
, Johnson
, D. A.
, Hnath
, E. J.
, and Millero
, F.
, “The thermodynamic behavior of hydrogen bromide in aqueous solutions of barium bromide
,” J. Chem. Thermodyn.
25
, 155
–172
(1993
).79.
Sang
, S. H.
, Sun
, M. L.
, Li
, H.
, Zhang
, X.
, and Zhang
, K. J.
, “A study on equilibria of the quaternary system Na+, K+//Br−, SO42− –H2O at 323 K
,” Chin. J. Inorg. Chem.
27
, 845
–849
(2011
).80.
Scott
, A. F.
and Durham
, E. J.
, “Studies in the solubilities of the soluble electrolytes. III. The solubilities and densities of saturated solutions of the bromides and iodides of sodium and potassium between 0 °C and 92 °C
,” J. Phys. Chem.
34
, 1424
–1438
(1930
).81.
Silvester
, L. F.
and Pitzer
, K. S.
, “Thermodynamics of electrolytes. X. Enthalpy and the effect of temperature on the activity coefficients
,” J. Solution Chem.
7
, 327
–337
(1978
).82.
Simoes
, M. C.
, Hughes
, K. J.
, Ingham
, D. B.
, Ma
, L.
, and Pourkashanian
, M.
, “Estimation of the Pitzer parameters for 1-1, 2-1, 3-1, 4-1, and 2-2 single electrolytes at 25 °C
,” J. Chem. Eng. Data
61
, 2536
–2554
(2016
).83.
Simonson
, J. M.
, Roy
, R. N.
, Roy
, L. N.
, and Johnson
, D. A.
, “The thermodynamics of aqueous borate solutions. I. Mixtures of boric acid with sodium or potassium borate and chloride
,” J. Solution Chem.
16
, 791
–803
(1987
).84.
Spencer
, R. J.
, Moller
, N.
, and Weare
, J. H.
, “The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H2O system at temperatures below 25 °C
,” Geochim. Cosmochim. Acta
54
, 575
–590
(1990
).85.
Tialowska-Mocharla
, H.
and Atkinson
, G.
, “Thermodynamics of concentrated electrolyte mixtures. 6. Activity coefficients of aqueous CaCl2-CaBr2 mixtures at 25 °C
,” J. Phys. Chem.
89
, 4884
–4887
(1985
).86.
Tyrrell
, H. J. V.
and Richards
, J.
, “The ternary system BaBr2-HgBr2-H2O at 25°, 10.4°, and 4.5°
,” J. Chem. Soc.
1953
, 3812
–3815
(1953
).87.
Venkateswarlu
, C.
and Ananthaswamy
, J.
, “Thermodynamics of electrolyte solutions: activity coefficients of NaCl in NaCl+ MnCl2+H2O system at 25 °C
,” Indian J. Chem.
27A
, 768
–771
(1988
).88.
Vlasov
, N. A.
and Bergman
, A. G.
, “Polytherm of the ternary system sodium bromide - potassium bromide - water at the temperature range from the full freezing point up to +50°C
,” Dokl. AN SSSR
39
, 148
–151
(1943
).89.
Voigt
, W.
, “What we know and still not know about oceanic salts
,” Pure Appl. Chem.
87
, 1099
–1126
(2015
).90.
Yan
, W.
, “Measurement and correlation of activity coefficients for (sodium bromide + lithium bromide + water) at T = 298.15 K
,” J. Chem. Thermodyn.
32
, 631
–637
(2000
).91.
Yan
, W.
and Han
, S.
, “Activity and osmotic coefficients for the ternary system (sodium bromide + tetramethylammonium bromide + water) at T =298.15 K
,” J. Chem. Thermodyn.
30
, 743
–749
(1998
).92.
Yan
, W.
, Zhang
, R.
, and Han
, S.
, “Thermodynamic properties of the ternary system potassium bromide + lithium bromide + water at 25 °C
,” J. Solution Chem.
30
, 193
–200
(2001
).93.
Ying
, R.
, Li
, D.
, Meng
, L.
, Deng
, T.
, and Guo
, Y.
, “Experimental and thermodynamic model study on solid and liquid equilibrium of ternary system MgBr2–MgSO4–H2O at 333.15 K
,” J. Chem. Eng. Data
61
, 2624
–2628
(2016
).94.
Zheng
, X. Y.
, Tang
, Y.
, and Xu
, C.
, Tibet Saline Lake
(Science Press
, Beijing, China
, 1988
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.