We present results on self-consistent calculations of second pVT–virial coefficients B(T), viscosity data η(T), and diffusion coefficients ρD(T) for eleven heavy globular gases: boron trifluoride (BF3), carbon tetrafluoride (CF4), silicon tetrafluoride (SiF4), carbon tetrachloride (CCl4), silicon tetrachloride (SiCl4), sulfur hexafluoride (SF6), molybdenum hexafluoride (MoF6), tungsten hexafluoride (WF6), uranium hexafluoride (UF6), tetramethyl methane (C(CH3)4, TMM), and tetramethyl silane (Si(CH3)4, TMS). The calculations are performed mainly in the temperature range between 200 and 900 K by means of isotropic n−6 potentials with temperature-dependent separation rm(T) and potential well depth ε(T). The potential parameters at T=0 K (ε, rm,n) and the enlargement of the first level radii δ are obtained solving an ill-posed problem of minimizing the squared deviations between experimental and calculated values normalized to their relative experimental error. The temperature dependence of the potential is obtained as a result of the influence of vibrational excitation on binary interactions. This concept of the isotropic temperature-dependent potential (ITDP) is presented in detail where gaseous SF6 will serve as an example. The ITDP is subsequently applied to all other gases. This approach and the main part of the results presented here have already been published during 1996–2000. However, in some cases the data are upgraded due to the recently improved software (CF4,SF6) and newly found experimental data (CF4,SiF4,CCl4,SF6).

This content is only available via PDF.
You do not currently have access to this content.