The stability problem of a system of charged point particles is discussed, and a number of relevant theorems are proven. The total energy of a system of N particles has a negative lower bound proportional to N53 when no assumption is made on the statistics of the particles. When all particles belong to a fixed number of fermion species, a lower bound exists proportional to N.

1.
M. E.
Fisher
and
D.
Ruelle
,
J. Math. Phys.
7
,
260
(
1966
).
2.
D.
Ruelle
,
Helv. Phys. Acta.
36
,
183
;
D.
Ruelle
,
36
,
789
(
1963
).,
Helv. Phys. Acta
3.
M. E.
Fisher
,
Arch. Ratl. Mech. Anal.
17
,
377
(
1964
).
4.
L. L.
Foldy
,
Phys. Rev.
124
,
649
(
1961
).
5.
M.
Girardeau
and
G.
Arnowitt
,
Phys. Rev.
113
,
755
(
1959
);
M.
Girardeau
,
Phys. Rev.
127
,
1809
(
1962
); ,
Phys. Rev.
J. M.
Stephen
,
Proc. Phys. Soc. (London)
79
,
994
(
1962
);
W. H.
Bassichis
and
L. L.
Foldy
,
Phys. Rev.
133
,
A935
(
1964
);
W. H.
Bassichis
,
Phys. Rev.
134
,
A543
(
1964
). ,
Phys. Rev.
Another paper concerned with the stability problem, with a point of view closer to ours is:
E.
Teller
,
Rev. Mod. Phys.
34
,
627
(
1962
).
6.
F. J. Dyson (to be published).
7.
L.
Onsager
,
J. Phys. Chem.
43
,
189
(
1939
).
8.
For details, see Ref. 6.
This content is only available via PDF.
You do not currently have access to this content.