We investigate the equivalence of a reversible channel and a channel that is an isometry. Moreover, we study several equivalent characterizations of reversible channels, from views of adjoint channels, complementary channels, quantum fidelity and Choi representations of channels, respectively. Also, a channel that is an isometry has extension properties from the Banach space of all trace-class operators to all Schatten p-class operators. Finally, we get that the quantum relative entropy between any two states can never change by applying a channel that is an isometry to both states.
REFERENCES
1.
Arias
, A.
, Gheondea
, A.
, and Gudder
, S.
, “Fixed points of quantum operations
,” J. Math. Phys.
43
, 5872
–5881
(2002
).2.
Arazy
, J.
, “The isometries of Cp
,” Isr. J. Math.
22
, 247
–256
(1975
).3.
Chiribella
, G.
, Davidson
, K. R.
, Paulsen
, V. I.
, and Rahaman
, M.
, “Positive maps and entanglement in real Hilbert spaces
,” Ann. Henri Poincare
24
, 4139
–4168
(2023
).4.
Davies
, E. B.
, Quantum Theory of Open Systems
(Academic Press
, London, NY, San Francisco
, 1976
).5.
Faulkner
, T.
, Hollands
, S.
, Swingle
, B.
, and Wang
, Y.
, “Approximate recovery and relative entropy I: General von Neumann subalgebras
,” Commun. Math. Phys.
389
, 349
–397
(2022
).6.
Gehér
, G. P.
, “An elementary proof for the non-bijective version of Wigner’s theorem
,” Phys. Lett. A
378
, 2054
–2057
(2014
).7.
Holevo
, A. S.
, Quantum Systems, Channels, Information, A Mathematical Introduction
(Berlin, DeGruyter
, 2012
).8.
Heinosaari
, T.
and Ziman
, M.
, The Mathematical Language of Quantum Theory
(Cambridge University Press
, Cambridge
, 2012
).9.
Jenčová
, A.
, “Reversibility conditions for quantum operations
,” Rev. Math. Phys.
24
, 1250016
(2012
).10.
Junge
, M.
, Renner
, R.
, Sutter
, D.
, Wilde
, M. M.
, and Winter
, A.
, “Universal recovery maps and approximate sufficiency of quantum relative entropy
,” Ann. Henri Poincare
19
, 2955
–2978
(2018
).11.
Kadison
, R. V.
, “Isometries of operator algebras
,” Ann. Math.
54
, 325
–338
(1951
).12.
13.
Li
, Y.
, Gao
, S.
, and Hao
, H.
, “The sandwiched Rényi divergence and quantum positive evidence order in infinite-dimensional Hilbert space
,” Rep. Math. Phys.
88
, 175
–193
(2021
).14.
Lami
, L.
and Shirokov
, M. E.
, “Attainability and lower semi-continuity of the relative entropy of entanglement and variations on the theme
,” Ann. Henri Poincaré
24
, 4069
–4137
(2023
).15.
Li
, Y.
and Du
, H. K.
, “Interpolations of entanglement breaking channels and equivalent conditions for completely positive maps
,” J. Funct. Anal.
268
, 3566
–3599
(2015
).16.
Li
, Y.
, Li
, F.
, Chen
, S.
, and Chen
, Y.
, “Approximation states and fixed points of quantum channels
,” Rep. Math. Phys.
91
, 117
–129
(2023
).17.
Li
, Y.
and Wang
, S. J.
, “Completely positive and isometric maps on Schatten-class operators
,” Results Math.
80
, 41
(2025
).18.
Lautenbacher
, L.
, de Melo
, F.
, and Bernardes
, N. K.
, “Approximating invertible maps by recovery channels: Optimality and an application to non-Markovian dynamics
,” Phys. Rev. A
105
, 042421
(2022
).19.
Lindblad
, G.
, “Entropy, information and quantum measurements
,” Commun. Math. Phys.
33
, 305
–322
(1973
).20.
Müller-Hermes
, A.
and Reeb
, D.
, “Monotonicity of the quantum relative entropy under positive maps
,” Ann. Henri Poincaré
18
, 1777
–1788
(2017
).21.
Müller-Lennert
, M.
, Dupuis
, F.
, Szehr
, O.
, Fehr
, S.
, and Tomamichel
, M.
, “On quantum Rényi entropies: A new generalization and some properties
,” J. Math. Phys.
54
, 122203
(2013
).22.
Mosonyi
, M.
and Ogawa
, T.
, “Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies
,” Commun. Math. Phys.
334
, 1617
–1648
(2015
).23.
Mosonyi
, M.
, “The strong converse exponent of discriminating infinite-dimensional quantum states
,” Commun. Math. Phys.
400
, 83
–132
(2023
).24.
Meise
, R.
and Vogt
, D.
, Introduction to Functional Analysis
(Clarendon Press
, Oxford
, 1997
).25.
Müller-Hermes
, A.
, “Decomposability of linear maps under tensor powers
,” J. Math. Phys.
59
, 102203
(2018
).26.
Nagy
, G.
, “On spectra of Lüders operations
,” J. Math. Phys.
49
, 022110
(2008
).27.
Nagy
, G.
, “Isometries on positive operators of unit norm
,” Publ. Math. Debrecen
82
, 183
–192
(2013
).28.
Petz
, D.
, “Monotonicity of the quantum relative entropy revisited
,” Rev. Math. Phys.
15
, 79
–91
(2003
).29.
Rahaman
, M.
, Jaques
, S.
, and Paulsen
, V. I.
, “Eventually entanglement breaking maps
,” J. Math. Phys.
59
, 062201
(2018
).30.
Russo
, B.
and Dye
, H. A.
, “A note on unitary operators in C∗-algebras
,” Duke Math. J.
33
, 413
–416
(1966
).31.
Shirokov
, M. E.
and Shulman
, T.
, “On superactivation of zero-error capacities and reversibility of a quantum channel
,” Commun. Math. Phys.
335
, 1159
–1179
(2015
).32.
Shirokov
, M. E.
, “Correlation measures of a quantum state and information characteristics of a quantum channel
,” J. Math. Phys.
64
, 112201
(2023
).33.
Shirokov
, M. E.
, “Strong* convergence of quantum channels
,” Quantum Inf. Process
20
, 145
(2021
).34.
Uhlmann
, A.
, “Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory
,” Commun. Math. Phys.
54
, 21
–32
(1977
).35.
Umegaki
, H.
, “Conditional expectation in an operator algebra. IV. Entropy and information
,” Kodai Math. J.
14
, 59
–85
(1962
).36.
Wehrl
, A.
, “General properties of entropy
,” Rev. Mod. Phys.
50
, 221
–260
(1978
).37.
Watrous
, J.
, The Theory of Quantum Information
(Cambridge University Press
, 2018
).© 2025 Author(s). Published under an exclusive license by AIP Publishing.
2025
Author(s)
You do not currently have access to this content.