We investigate the equivalence of a reversible channel and a channel that is an isometry. Moreover, we study several equivalent characterizations of reversible channels, from views of adjoint channels, complementary channels, quantum fidelity and Choi representations of channels, respectively. Also, a channel that is an isometry has extension properties from the Banach space of all trace-class operators to all Schatten p-class operators. Finally, we get that the quantum relative entropy between any two states can never change by applying a channel that is an isometry to both states.

1.
Arias
,
A.
,
Gheondea
,
A.
, and
Gudder
,
S.
, “
Fixed points of quantum operations
,”
J. Math. Phys.
43
,
5872
5881
(
2002
).
2.
Arazy
,
J.
, “
The isometries of Cp
,”
Isr. J. Math.
22
,
247
256
(
1975
).
3.
Chiribella
,
G.
,
Davidson
,
K. R.
,
Paulsen
,
V. I.
, and
Rahaman
,
M.
, “
Positive maps and entanglement in real Hilbert spaces
,”
Ann. Henri Poincare
24
,
4139
4168
(
2023
).
4.
Davies
,
E. B.
,
Quantum Theory of Open Systems
(
Academic Press
,
London, NY, San Francisco
,
1976
).
5.
Faulkner
,
T.
,
Hollands
,
S.
,
Swingle
,
B.
, and
Wang
,
Y.
, “
Approximate recovery and relative entropy I: General von Neumann subalgebras
,”
Commun. Math. Phys.
389
,
349
397
(
2022
).
6.
Gehér
,
G. P.
, “
An elementary proof for the non-bijective version of Wigner’s theorem
,”
Phys. Lett. A
378
,
2054
2057
(
2014
).
7.
Holevo
,
A. S.
,
Quantum Systems, Channels, Information, A Mathematical Introduction
(
Berlin, DeGruyter
,
2012
).
8.
Heinosaari
,
T.
and
Ziman
,
M.
,
The Mathematical Language of Quantum Theory
(
Cambridge University Press
,
Cambridge
,
2012
).
9.
Jenčová
,
A.
, “
Reversibility conditions for quantum operations
,”
Rev. Math. Phys.
24
,
1250016
(
2012
).
10.
Junge
,
M.
,
Renner
,
R.
,
Sutter
,
D.
,
Wilde
,
M. M.
, and
Winter
,
A.
, “
Universal recovery maps and approximate sufficiency of quantum relative entropy
,”
Ann. Henri Poincare
19
,
2955
2978
(
2018
).
11.
Kadison
,
R. V.
, “
Isometries of operator algebras
,”
Ann. Math.
54
,
325
338
(
1951
).
12.
Kraus
,
K.
,
States, Effects, and Operations
(
Springer Berlin
,
1983
).
13.
Li
,
Y.
,
Gao
,
S.
, and
Hao
,
H.
, “
The sandwiched Rényi divergence and quantum positive evidence order in infinite-dimensional Hilbert space
,”
Rep. Math. Phys.
88
,
175
193
(
2021
).
14.
Lami
,
L.
and
Shirokov
,
M. E.
, “
Attainability and lower semi-continuity of the relative entropy of entanglement and variations on the theme
,”
Ann. Henri Poincaré
24
,
4069
4137
(
2023
).
15.
Li
,
Y.
and
Du
,
H. K.
, “
Interpolations of entanglement breaking channels and equivalent conditions for completely positive maps
,”
J. Funct. Anal.
268
,
3566
3599
(
2015
).
16.
Li
,
Y.
,
Li
,
F.
,
Chen
,
S.
, and
Chen
,
Y.
, “
Approximation states and fixed points of quantum channels
,”
Rep. Math. Phys.
91
,
117
129
(
2023
).
17.
Li
,
Y.
and
Wang
,
S. J.
, “
Completely positive and isometric maps on Schatten-class operators
,”
Results Math.
80
,
41
(
2025
).
18.
Lautenbacher
,
L.
,
de Melo
,
F.
, and
Bernardes
,
N. K.
, “
Approximating invertible maps by recovery channels: Optimality and an application to non-Markovian dynamics
,”
Phys. Rev. A
105
,
042421
(
2022
).
19.
Lindblad
,
G.
, “
Entropy, information and quantum measurements
,”
Commun. Math. Phys.
33
,
305
322
(
1973
).
20.
Müller-Hermes
,
A.
and
Reeb
,
D.
, “
Monotonicity of the quantum relative entropy under positive maps
,”
Ann. Henri Poincaré
18
,
1777
1788
(
2017
).
21.
Müller-Lennert
,
M.
,
Dupuis
,
F.
,
Szehr
,
O.
,
Fehr
,
S.
, and
Tomamichel
,
M.
, “
On quantum Rényi entropies: A new generalization and some properties
,”
J. Math. Phys.
54
,
122203
(
2013
).
22.
Mosonyi
,
M.
and
Ogawa
,
T.
, “
Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies
,”
Commun. Math. Phys.
334
,
1617
1648
(
2015
).
23.
Mosonyi
,
M.
, “
The strong converse exponent of discriminating infinite-dimensional quantum states
,”
Commun. Math. Phys.
400
,
83
132
(
2023
).
24.
Meise
,
R.
and
Vogt
,
D.
,
Introduction to Functional Analysis
(
Clarendon Press
,
Oxford
,
1997
).
25.
Müller-Hermes
,
A.
, “
Decomposability of linear maps under tensor powers
,”
J. Math. Phys.
59
,
102203
(
2018
).
26.
Nagy
,
G.
, “
On spectra of Lüders operations
,”
J. Math. Phys.
49
,
022110
(
2008
).
27.
Nagy
,
G.
, “
Isometries on positive operators of unit norm
,”
Publ. Math. Debrecen
82
,
183
192
(
2013
).
28.
Petz
,
D.
, “
Monotonicity of the quantum relative entropy revisited
,”
Rev. Math. Phys.
15
,
79
91
(
2003
).
29.
Rahaman
,
M.
,
Jaques
,
S.
, and
Paulsen
,
V. I.
, “
Eventually entanglement breaking maps
,”
J. Math. Phys.
59
,
062201
(
2018
).
30.
Russo
,
B.
and
Dye
,
H. A.
, “
A note on unitary operators in C-algebras
,”
Duke Math. J.
33
,
413
416
(
1966
).
31.
Shirokov
,
M. E.
and
Shulman
,
T.
, “
On superactivation of zero-error capacities and reversibility of a quantum channel
,”
Commun. Math. Phys.
335
,
1159
1179
(
2015
).
32.
Shirokov
,
M. E.
, “
Correlation measures of a quantum state and information characteristics of a quantum channel
,”
J. Math. Phys.
64
,
112201
(
2023
).
33.
Shirokov
,
M. E.
, “
Strong* convergence of quantum channels
,”
Quantum Inf. Process
20
,
145
(
2021
).
34.
Uhlmann
,
A.
, “
Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory
,”
Commun. Math. Phys.
54
,
21
32
(
1977
).
35.
Umegaki
,
H.
, “
Conditional expectation in an operator algebra. IV. Entropy and information
,”
Kodai Math. J.
14
,
59
85
(
1962
).
36.
Wehrl
,
A.
, “
General properties of entropy
,”
Rev. Mod. Phys.
50
,
221
260
(
1978
).
37.
Watrous
,
J.
,
The Theory of Quantum Information
(
Cambridge University Press
,
2018
).
You do not currently have access to this content.