We elaborate the definition and properties of “massive” elementary systems in the (1 + 3)-dimensional Anti-de Sitter (AdS4) spacetime, on both classical and quantum levels. We fully exploit the symmetry group isomorphic to Sp(4,R), that is, the two-fold covering of SO0(2, 3) [Sp(4,R) SO0(2,3)×Z2], recognized as the relativity/kinematical group of motions in AdS4 spacetime. In particular, we discuss that the group coset Sp(4,R)/SU(1)×SU(2), as one of the Cartan classical domains, can be interpreted as a phase space for the set of free motions of a test massive particle on AdS4 spacetime; technically, in order to facilitate the computations, the whole process is carried out in terms of complex quaternions. The (projective) unitary irreducible representations (UIRs) of the Sp(4,R) group, describing the quantum version of such motions, are found in the discrete series of the Sp(4,R) UIRs. We also describe the null-curvature (Poincaré) and non-relativistic (Newton-Hooke) contraction limits of such systems, on both classical and quantum levels. On this basis, we unveil the dual nature of “massive” elementary systems living in AdS4 spacetime, as each being a combination of a Minkowskian-like elementary system with positive proper mass, with an isotropic harmonic oscillator arising from the AdS4 curvature and viewed as a Newton-Hooke elementary system. This matter-vibration duality will take its whole importance in the quantum regime (in the context of the validity of the equipartition theorem) in view of its possible rôle in the explanation of the current existence of dark matter.

1.
W.
de Sitter
, “
On the relativity of inertia. Remarks concerning Einstein’s latest hypothesis
,”
Proc. K. Ned. Acad. Wet.
19
(
2
),
1217
1225
(
1917
).
2.
A. A.
Kirillov
, “
Merits and demerits of the orbit method
,”
Bull. Am. Math. Soc.
36
,
433
488
(
1999
).
3.
A. A.
Kirillov
,
Elements of the Theory of Representations
(
Springer-Verlag
,
Berlin
,
1976
).
4.

Here, one may consider a comprehensive program of quantization of functions (or distributions) by using all resources of covariant integral quantization as it is defined, for instance, in Refs. 33, 78, and 81–83.

5.
E. P.
Wigner
, “
On unitary representations of the inhomogeneous Lorentz group
,”
Ann. Math.
40
,
149
204
(
1939
).
6.
T. D.
Newton
and
E. P.
Wigner
, “
Localized states for elementary systems
,”
Rev. Mod. Phys.
21
,
400
406
(
1949
).
7.
E.
Inönü
and
E. P.
Wigner
, “
Representations of the Galilei group
,”
Nuovo Cimento
9
,
705
718
(
1952
).
8.
J. M.
Lévy-Leblond
, “
Galilei group and nonrelativistic quantum mechanics
,”
J. Math. Phys.
4
,
776
788
(
1963
).
9.
J.
Voisin
, “
On some unitary representations of the Galilei group I. Irreducible representations
,”
J. Math. Phys.
6
,
1519
1529
(
1965
);
J.
Voisin
, “
On the unitary representations of the Galilei group. II. Two-particle systems
,”
J. Math. Phys.
6
,
1822
1832
(
1965
).
10.
F.
Gürsey
and
T. D.
Lee
, “
Spin 1/2 wave equation in de-Sitter space
,”
Proc. Natl. Acad. Sci. U. S. A.
49
,
179
186
(
1963
).
11.
C.
Fronsdal
, “
Elementary particles in a curved space
,”
Rev. Mod. Phys.
37
,
221
224
(
1965
).
12.
C.
Fronsdal
, “
Elementary particles in a curved space. II
,”
Phys. Rev. D
10
,
589
598
(
1974
).
13.
M. A.
del Olmo
and
J. P.
Gazeau
, “
Covariant integral quantization of the unit disk
,”
J. Math. Phys.
61
,
022101
(
2020
).
14.
M.
Enayati
,
J. P.
Gazeau
,
H.
Pejhan
, and
A.
Wang
,
The de Sitter (dS) Group and Its Representations: An Introduction to Elementary Systems and Modeling the Dark Energy Universe
, 2nd ed. (
Springer Nature
,
Cham, Switzerland
,
2024
).
15.

Note that, trivially, this exception holds for any 1 + n-dimensional dS and AdS spacetimes (n = 1, 2, …), but, since in the current paper we are interested in (1 + 3) dimension, we merely point out dS4 and AdS4 spacetimes throughout the paper.

16.
R.
Balbinot
,
A. M.
El Gradechi
,
J. P.
Gazeau
, and
B.
Giorgini
, “
Phase spaces for quantum elementary systems in anti-de Sitter and Minkowski spacetimes
,”
J. Phys. A: Math. Gen.
25
,
1185
1210
(
1992
).
17.
J. F.
Cariñena
,
J. M.
Gracia-Bondia
, and
C.
Várilly
, “
Relativistic quantum kinematics in the Moyal representation
,”
J. Phys. A: Math. Gen.
23
,
901
933
(
1990
).
18.
N. T.
Evans
, “
Discrete series for the universal covering group of the 3 + 2 de Sitter group
,”
J. Math. Phys.
8
,
170
184
(
1967
).
19.
V. K.
Dobrev
, “
Representations and q-deformation of anti de Sitter symmetry
,”
Bulg. J. Phys.
38
,
252
260
(
2011
).
20.
V. K.
Dobrev
and
P. J.
Moylan
, “
Finite-dimensional singletons of the quantum anti de Sitter algebra
,”
Phys. Lett. B
315
,
292
298
(
1993
).
21.
L. H.
Thomas
, “
On unitary representations of the group of de Sitter space
,”
Ann. Math.
42
,
113
126
(
1941
).
22.
T. D.
Newton
, “
A note on the representations of the de Sitter group
,”
Ann. Math.
51
,
730
733
(
1950
).
23.
R.
Takahashi
, “
Sur les repréntations unitaires des groupes de Lorentz généralisés
,”
Bull. Soc. Math. Fr.
91
,
289
433
(
1963
).
24.
J.
Dixmier
, “
Représentations intégrables du groupe de De Sitter
,”
Bull. Soc. Math. Fr.
89
,
9
41
(
1961
).
25.
J.
Mickelsson
and
J.
Niederle
, “
Contractions of representations of de Sitter groups
,”
Commun. Math. Phys.
27
,
167
180
(
1972
).
26.
T.
Garidi
,
E.
Huguet
, and
J.
Renaud
, “
de Sitter waves and the zero curvature limit
,”
Phys. Rev. D
67
,
124028
(
2003
).
27.
A. O.
Barut
and
A.
Böhm
, “
Reduction of a class of O(4, 2) representations with respect to SO(4, 1) and SO(3, 2)
,”
J. Math. Phys.
11
,
2938
2945
(
1970
).
28.
G.
Mack
, “
All unitary ray representations of the conformal group SU(2,2) with positive energy
,”
Commun. Math. Phys.
55
,
1
28
(
1977
).
29.
E.
Angelopoulos
,
M.
Flato
,
C.
Fronsdal
, and
D.
Sternheimer
, “
Massless particles, conformal group, and de Sitter universe
,”
Phys. Rev. D
23
,
1278
1289
(
1981
).
30.
J. B.
Ehrman
, “
On the unitary irreducible representations of the universal covering group of the 3 + 2 de Sitter group
,”
Proc. Cambridge Philos. Soc.
53
,
290
303
(
1957
).
31.
E.
Angelopoulos
and
M.
Laoues
, “
Masslessness in n-dimensions
,”
Rev. Math. Phys.
10
,
271
299
(
1998
).
32.

In the context of the latter category, specifically in the AdS4 scenario pertinent to our study, there exist particular UIRs of the universal covering group of SO0(2, 3), which contract to massive yet tachyonic (m2 < 0) representations of the Poincaré group.18,30 These representations are classified as type III|m| according to the scheme outlined in Ref. 31. Owing to their tachyonic nature and consequently the acausal propagation of their corresponding fields, we categorize them within this latter category, representing AdS4 UIRs devoid of a physical Poincaré contraction limit. Moreover, the present work solely focuses on the physical Wigner massive representations of the Poincaré group (with positive mass and positive energy). These representations are demonstrated to be contraction limits of the (extended) holomorphic discrete series of the AdS group and its universal covering.

33.
S. T.
Ali
,
J. P.
Antoine
, and
J. P.
Gazeau
, “
Coherent states, wavelets and their generalizations
,” in
Theoretical and Mathematical Physics
, 2nd ed. (
Springer
,
New York
,
2014
).
34.
A. H.
Dooley
, “
Contractions of Lie groups and applications to analysis
,” in
Topics in Modern Harmonic Analysis
(
Istituto Nazionale di Alta Matematica Francesco Severi
,
Roma
,
1983
), Vol.
I
, pp.
483
515
.
35.
A. H.
Dooley
and
J. W.
Rice
, “
Contractions of rotation groups and their representations
,”
Math. Proc. Cambridge Philos. Soc.
94
,
509
517
(
1983
).
36.
A. H.
Dooley
and
J. W.
Rice
, “
On contractions of semisimple Lie groups
,”
Trans. Am. Math. Soc.
289
,
185
202
(
1985
).
37.
J.
Renaud
, “
The contraction of the SU(1,1) discrete series of representations by means of coherent states
,”
J. Math. Phys.
37
,
3168
3179
(
1996
).
38.

Note that, in the sequel, the Minkowski indices μ, ν, … will be reserved to the subset {0, 1, 2, 3}, the spatial indices i, j, … to the subset {1, 2, 3}, and the indices a, b, … to the subset {1, 2, 3, 5}.

39.
G. S.
Pogosyan
and
A.
Yakhno
, “
Two-dimensional imaginary lobachevsky space. Separation of variables and contractions
,”
Phys. At. Nucl.
74
,
1062
1072
(
2011
).
40.
W.
Drechsler
and
R.
Sasaki
, “
Solutions of invariant field equations in the (4,1) de Sitter space
,”
Nuovo Cimento A
46
,
527
578
(
1978
).
41.

Technically, the connected component of O(2, 3), SO0(2, 3), containing the identity consists of all linear transformations in R2,3 that leave invariant the form of the metric ηαβ, have determinant unity, and also preserve the orientation of the “time” variable t, being defined through the relation y5±iy0(y5)2+(y0)2exp±it (−π ⩽ t < π). Remember that O(2, 3) and SO(2, 3) have four and two connected components, respectively.

42.

For the real quaternions and the related discussions, readers can go to Ref. 14.

43.
H.
Aslaksen
, “
Quaternionic determinants
,” in
Mathematical Conversations
(
Springer-Verlag
,
New York, NY
,
1996
), Vol.
18
, Issue
3
, pp.
142
156
.
44.
N.
Cohen
and
S.
de Leo
, “
The quaternionic determinant
,”
Electron. J. Linear Algebra
7
,
100
111
(
2000
).
45.

For a real quaternion x=(x4,x)H, the norm ‖x‖ is given by: x2=detx=xx̃=(x1)2+(x2)2+(x3)2+(x4)2R+. It is zero if and only if all the components are zero.

46.
G.
Zhang
, “
Branching of metaplectic representation of Sp(2,R) under its principal SL(2,R)-subgroup
,”
Representation Theory
26
,
498
514
(
2022
).
47.

A full justification of this action will be provided in the next subsection.

48.

Note that the selection of the origin is only a matter of choice because all the points on the AdS4 manifold are equivalent [recall that AdS4 is actually a homogeneous space of Sp(4, R), as we have seen above]. Of course, if one was to deal with, for instance, the unit-sphere S4 as representing a four-dimensional manifold in R5, one has no hesitation to acknowledge such a property. Dealing with the representation of the AdS4 hyperboloid embedded in R2,3 might be however misleading in this respect due to its deformed shape.

49.
S.
Helgason
,
Differential Geometry, Lie Groups and Symmetric Spaces
(
Academic
,
San Diego
,
1978
).
50.
L. K.
Hua
, “
Harmonic analysis of functions of several complex variables in the classical domains
,” in
Translations of Mathematical Monographs
(
American Mathematical Society
,
Providence, RI
,
1963
), Vol.
6
.
51.
A.
Borel
, “
Les espaces hermitiens symétriques
,”
Sémin. Bourbaki
62
(
2
),
121
132
(
1954
).
52.

Note that the form (3.6) is proportional to the Killing form for sp(4,R),14 that is, K(X, X′) ≡ tr(adXadX), where adX stands for the adjoint action of sp(4,R) on itself: sp(4,R)XadX(X)X,X. This action is nothing but the derivative of the respective adjoint action of Sp(4,R) on sp(4,R) [as given by (3.7)]. See more details in Ref. 14.

53.

Note that the space-rotations generators Yis commute with the time-translations one X0 [see (2.56)].

54.

One notices here that the generic element X(k0,ς,α,β) is kind of reminiscent of the form assumed by the elements of Sp(4,R), and subsequently, the identities given in (3.12) of the identities already given in (2.26). Having this point in mind, one can show that the determinant of the generic element X(k0,ς,α,β) is fixed and equal to (2)2. This is indeed the result already expected from the fact that the (co-)adjoint action (3.7) is determinant preserving since det(X)=det(2X0)=(2)2. Another interesting point to be noticed here is that the first identity in (3.12) is consistent with the constraint issued from the Killing form of the algebra for the generic element X of the (co-)adjoint orbit class, i.e., k(X,X)tr(XX)=2kk*(ik0+ς)(ik0+ς)*s=22, where we have used the notation (z)s for the scalar part of the complex quaternion z and the fact that (ik0+ς)*=(ik0+ς) and that k*=k̄.

55.
E.
Onofri
, “
Dynamical quantization of the Kepler manifold
,”
J. Math. Phys.
17
,
401
408
(
1976
).
56.

The co-adjoint orbit class describing massive elementary systems for the Poincaré kinematical symmetry is described in Ref. 17.

57.

In this context, we encourage readers to see  Appendix B.

58.
A. O.
Barut
,
Electrodynamics and Classical Theory on Fields and Particles
(
Dover
,
New York
,
1980
).
59.
W. K.
Tung
,
Group Theory in Physics
(
World Scientific
,
Singapore
,
1985
).
60.
F. J.
Yndurain
,
Relativistic Quantum Mechanics and Introduction to Field Theory
(
Springer
,
Berlin
,
1996
).
61.
H.
Bacry
and
J. M.
Lévy-Leblond
, “
Possible kinematics
,”
J. Math. Phys.
9
,
1605
1614
(
1968
).
62.

For Newton-Hooke groups and its relevant discussions, see  Appendix C.

63.
G.
Cohen-Tannoudji
and
J.-P.
Gazeau
, “
Cold dark matter: A gluonic Bose-Einstein condensate in anti-de Sitter space time
,”
Universe
7
(
11
),
402
(
2021
).
64.
J.-P.
Gazeau
, “
Mass in de Sitter and anti-de Sitter universes with regard to dark matter
,”
Universe
6
(
5
),
66
(
2020
).
65.

We will show in the sequel that when = ȷ, it corresponds to the situations known as the “massless” “spin” cases.

66.

Again, the first identity is consistent with the constraint issued from the Killing form of the algebra for the generic element of the (co-)adjoint orbit class O2X0+2ȷY3 and the second one with the fact that the (co-)adjoint action (3.7) is determinant preserving.

67.
M. H.
Stone
, “
On one-parameter unitary groups in Hilbert space
,”
Ann. Math.
33
,
643
648
(
1932
).
68.

The representations P(m,s) are described in  Appendix B.

69.
J.-P.
Gazeau
and
V.
Hussin
, “
Poincaré contraction of SU(1,1) Fock-Bargmann structure
,”
J. Phys. A: Math. Gen.
25
,
1549
1573
(
1992
).
70.
O.
Arratia
and
M. A.
del Olmo
, “
Elementary systems of (1 + 1) kinematical groups: Contraction and quantization
,”
Fortschr. Phys.
45
,
103
128
(
1997
).
71.
A. M.
Elgradechi
and
S.
De Bièvre
, “
Phase space quantum mechanics on the anti-de Sitter spacetime and its Poincaré contraction
,”
Ann. Phys.
235
,
1
34
(
1994
).
72.
C.
Cishahayo
and
S.
De Bièvre
, “
On the contraction of the discrete series of SU(1, 1)
,”
Ann. Inst. Fourier
43
(
2
),
551
567
(
1993
).
73.
S.
De Bièvre
and
A. M.
Elgradechi
, “
Quantum mechanics and coherent states on the anti-de Sitter spacetime and their Poincaré contraction
,”
Ann. Inst. Henri Poincaré
57
(
4
)
A 403
428
(
1992
).
74.
S. T.
Ali
,
J. P.
Gazeau
, and
M. R.
Karim
, “
Frames, the β-duality in Minkowski space and spin coherent states
,”
J. Phys. A: Math. Gen.
29
,
5529
5549
(
1996
).
75.
J. P.
Gazeau
and
J.
Renaud
, “
Relativistic harmonic oscillator and space curvature
,”
Phys. Lett. A
179
,
67
71
(
1993
).
76.
O.
Arratia
,
M. A.
Martín
, and
M. A.
del Olmo
, “
(2 + 1) Newton-Hooke classical and quantum systems
,”
Int. J. Theor. Phys.
50
,
2035
2045
(
2011
).
77.

The UIRs of the Newton-Hooke group are described in  Appendix C.

78.
J. P.
Gazeau
,
Coherent States in Quantum Physics
(
Wiley VCH
,
Weinheim
,
2009
).
79.
A. R.
Edmonds
,
Angular Momentum in Quantum Mechanics
(
Princeton University Press
,
Princeton
,
1996
).
80.
J.-P.
Gazeau
,
M. A.
del Olmo
, and
H.
Pejhan
, “
Matrix elements and characters of the discrete series (‘massive’) unitary irreducible representations of Sp(4,R)
,”
Int. J. Geomet. Methods Mod. Phys.
(published online).
81.
H.
Bergeron
and
J. P.
Gazeau
, “
Integral quantizations with two basic examples
,”
Ann. Phys.
344
,
43
68
(
2014
).
82.
J. P.
Gazeau
, “
Covariant integral quantizations and their applications to quantum cosmology
,”
Acta Polytech.
56
,
173
179
(
2016
).
83.
J. P.
Gazeau
and
R.
Murenzi
, “
Covariant affine integral quantization(s)
,”
J. Math. Phys.
57
,
052102
(
2016
).
84.
Arvind
,
B.
Dutta
,
N.
Mukunda
, and
R.
Simon
, “
The real symplectic groups in quantum mechanics and optics
,”
Pramana J. Phys.
45
,
471
497
(
1995
).
85.
J. R.
Derome
and
J. G.
Dubois
, “
Hooke’s symmetries and nonrelativistic cosmological kinematics. I
,”
Nuovo Cimento B
9
,
351
376
(
1972
).
86.
J. G.
Dubois
, “
Hooke’s symmetries and nonrelativistic cosmological kinematics. II: Irreducible projective representations
,”
Nuovo Cimento B
15
,
1
17
(
1973
).
87.
J. F.
Cariñena
and
M.
Santander
, “
On the projective unitary representations of connected Lie groups
,”
J. Math. Phys.
16
,
1416
1420
(
1975
).
88.
G. W.
Mackey
,
Unitary Group Representations in Physics, Probability and Number Theory
(
Benjamin & Cummins
,
Reading, MA
,
1978
).
89.
J. D.
Talman
,
Special Functions: A Group Theoretic Approach
(
W. A. Benjamin
,
New York
,
1968
).
90.
J.-P.
Gazeau
, “
Nature algébrique de l’opérateur sturmien associé à l’équation de Schrödinger. Extension de certains résultats à la théorie des représentations finies de GL(n,C) et de U(n) (polynômes à treillis de Gel’fand)
,” Thèse d’état,
Université Paris
,
1978
.
91.
A.
Horzela
and
F. H.
Szafraniec
, “
A measure-free approach to coherent states
,”
J. Phys. A: Math. Theor.
45
,
244018
(
2012
).
92.
A.
Horzela
and
F. H.
Szafraniec
, “
A measure-free approach to coherent states refined
,” in
Symmetries and Groups in Contemporary Physics (Proceedings of the XXIX ICGTMP 2012)
,
Nankai Series in Pure, Applied Mathematics and Theoretical Physics
(
World Scientific
,
Singapore
,
2013
), pp.
563
568
.
93.
N.
Aronszajn
, “
Theory of reproducing kernels
,”
Trans. Am. Math. Soc.
68
,
337
404
(
1950
).
94.
F. W.
Olver
and
L. C.
Maximon
, Bessel functions in [DLMF] NIST Digital Library of Mathematical,
2010
, https://dlmf.nist.gov/.
95.
H. H.
Hassan
,
G.
Grenet
,
M.
Kibler
, and
J. P.
Gazeau
, “
Formulae for ylm(r1 × r2)
,”
J. Phys. A: Math. Gen.
13
,
2623
2629
(
1980
).
96.

Here, for later use, it is worthwhile noting that, for negative values of λZ, the left-hand side of Eq. (F25) turns to a finite sum as: (1+u22ut)λ=l=02|λ|ulClλ(t).

97.
W.
Magnus
,
F.
Oberhettinger
, and
R. P.
Soni
,
Formulas and Theorems for the Special Functions of Mathematical Physics
(
Springer
,
Berlin
,
1966
).
You do not currently have access to this content.