Magnetic helicity is a quantity that underpins many theories of magnetic relaxation in electrically conducting fluids, both laminar and turbulent. Although much theoretical effort has been expended on magnetic fields that are everywhere tangent to their domain boundaries, many applications, both in astrophysics and laboratories, actually involve magnetic fields that are line-tied to the boundary, i.e., with a non-trivial normal component on the boundary. This modification of the boundary condition requires a modification of magnetic helicity, whose suitable replacement is called relative magnetic helicity. In this work, we investigate rigorously the behaviour of relative magnetic helicity under turbulent relaxation. In particular, we specify the normal component of the magnetic field on the boundary and consider the ideal magnetohydrodynamic limit of resistivity tending to zero in order to model the turbulent evolution in the sense of Onsager’s theory of turbulence. We show that relative magnetic helicity is conserved in this distinguished limit and that, for constant viscosity, the magnetic field relaxes in a weak, time-averaged sense to a magnetohydrostatic equilibrium.

1.
J. B.
Taylor
, “
Relaxation of toroidal plasma and generation of reverse magnetic fields
,”
Phys. Rev. Lett.
33
,
1139
1141
(
1974
).
2.
L.
Woltjer
, “
A theorem on force-free magnetic fields
,”
Proc. Natl. Acad. Sci. U. S. A.
44
,
489
491
(
1958
).
3.
A.
Bhattacharjee
and
R. L.
Dewar
, “
Energy principle with global invariants
,”
Phys. Fluids
25
,
887
897
(
1982
).
4.
A.
Bhattacharjee
,
R. L.
Dewar
,
A. H.
Glasser
,
M. S.
Chance
, and
J. C.
Wiley
, “
Energy principle with global invariants: Applications
,”
Phys. Fluids
26
,
526
534
(
1983
).
5.
E.
Hameiri
, “
Some improvements in the theory of plasma relaxation
,”
Phys. Plasmas
21
,
044503
(
2014
).
6.
M. A.
Berger
and
G. B.
Field
, “
The topological properties of magnetic helicity
,”
J. Fluid Mech.
147
,
133
148
(
1984
).
7.
J. M.
Finn
and
T. M.
Antonsen
, “
Magnetic helicity: What is it and what is it good for?
,”
Comments Plasma Phys. Controlled Fusion
9
,
111
126
(
1985
).
8.
D.
MacTaggart
and
A.
Valli
, “
Relative magnetic helicity in multiply connected domains
,”
J. Phys. A: Math. Theor.
56
,
435701
(
2023
).
9.
P.
Laurence
and
M.
Avellaneda
, “
On Woltjer’s variational principle for force-free fields
,”
J. Math. Phys.
32
,
1240
1253
(
1991
).
10.
S. K.
Antiochos
,
J. T.
Karpen
, and
C. R.
DeVore
, “
Coronal magnetic field relaxation by null-point reconnection
,”
Astrophys. J.
575
,
578
584
(
2002
).
11.
A. R.
Yeates
,
A. J. B.
Russell
, and
G.
Hornig
, “
Physical role of topological constraints in localized magnetic relaxation
,”
Proc. R. Soc. A
471
,
20150012
(
2015
); arXiv:1412.7314 [physics.plasm-ph].
12.
D. I.
Pontin
,
S.
Candelaresi
,
A. J. B.
Russell
, and
G.
Hornig
, “
Braided magnetic fields: Equilibria, relaxation and heating
,”
Plasma Phys. Controlled Fusion
58
,
054008
(
2016
); arXiv:1512.05918 [physics.plasm-ph].
13.
L.
Onsager
, “
Statistical hydrodynamics
,”
Il Nuovo Cimento
6
,
279
287
(
1949
).
14.
H. K.
Moffatt
, “
Magnetic relaxation and the Taylor conjecture
,”
J. Plasma Phys.
81
,
905810608
(
2015
).
15.
R.
Komendarczyk
, “
On Woltjer’s force-free minimizers and Moffatt’s magnetic relaxation
,”
Bull. London Math. Soc.
54
,
233
241
(
2022
).
16.
P.
Constantin
and
F.
Pasqualotto
, “
Magnetic relaxation of a Voigt–MHD system
,”
Commun. Math. Phys.
402
,
1931
1952
(
2023
); arXiv:2208.11109 [math.AP].
17.
T.
Buckmaster
and
V.
Vicol
, “
Convex integration constructions in hydrodynamics
,”
Bull. Am. Math. Soc.
58
,
1
44
(
2020
).
18.
G.
Eyink
, “
Onsager’s ‘ideal turbulence’ theory
,”
J. Fluid Mech.
988
,
P1
(
2024
).
19.
C.
De Lellis
and
L.
Székelyhidi
, Jr.
, “
On turbulence and geometry: From Nash to Onsager
,”
Notices Am. Math. Soc.
66
,
677
685
(
2019
).
20.
C.
De Lellis
and
L.
Székelyhidi
, Jr.
, “
The Euler equations as a differential inclusion
,”
Ann. Math.
2
(
170
),
1417
1436
(
2009
).
21.
C.
De Lellis
and
L.
Székelyhidi
, Jr.
, “
Dissipative continuous Euler flows
,”
Invent. Math.
193
,
377
407
(
2013
).
22.
P.
Isett
, “
A proof of Onsager’s conjecture
,”
Ann. Math.
188
(
3
),
871
963
(
2018
).
23.
T.
Buckmaster
,
C.
de Lellis
,
L.
Székelyhidi
, Jr.
, and
V.
Vicol
, “
Onsager’s conjecture for admissible weak solutions
,”
Commun. Pure Appl. Math.
72
,
229
274
(
2019
).
24.
R. E.
Caflisch
,
I.
Klapper
, and
G.
Steele
, “
Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD
,”
Commun. Math. Phys.
184
,
443
455
(
1997
).
25.
E.
Priest
,
Magnetohydrodynamics of the Sun
(
Cambridge University Press
,
2014
).
26.
G. L.
Eyink
and
H.
Aluie
, “
The breakdown of Alfvén’s theorem in ideal plasma flows: Necessary conditions and physical conjectures
,”
Physica D
223
,
82
92
(
2006
); arXiv:physics/0607073 [physics.plasm-ph].
27.
G. L.
Eyink
,
A.
Lazarian
, and
E. T.
Vishniac
, “
Fast magnetic reconnection and spontaneous stochasticity
,”
Astrophys. J.
743
,
51
(
2011
).
28.
G.
Eyink
,
E.
Vishniac
,
C.
Lalescu
,
H.
Aluie
,
K.
Kanov
,
K.
Bürger
,
R.
Burns
,
C.
Meneveau
, and
A.
Szalay
, “
Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence
,”
Nature
497
,
466
469
(
2013
).
29.
E.
Kang
and
J.
Lee
, “
Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics
,”
Nonlinearity
20
,
2681
2689
(
2007
).
30.
H.
Aluie
, “
Hydrodynamic and magnetohydrodynamic turbulence: Invariants, cascades, and locality
,” Ph.D. thesis,
Johns Hopkins University
,
MD
,
2009
.
31.
R.
Beekie
,
T.
Buckmaster
, and
V.
Vicol
, “
Weak solutions of ideal MHD which do not conserve magnetic helicity
,”
Ann. PDE
6
,
1
(
2020
).
32.
D.
Faraco
,
S.
Lindberg
, and
L.
Székelyhidi
, Jr.
, “
Magnetic helicity, weak solutions and relaxation of ideal MHD
,”
Commun. Pure Appl. Math.
77
,
2387
2412
(
2024
).
33.
D.
Faraco
,
S.
Lindberg
, and
L.
Székelyhidi
, Jr.
, “
Bounded solutions of ideal MHD with compact support in space-time
,”
Arch. Ration. Mech. Anal.
239
,
51
93
(
2021
).
34.
D.
Faraco
and
S.
Lindberg
, “
Proof of Taylor’s conjecture on magnetic helicity conservation
,”
Commun. Math. Phys.
373
,
707
738
(
2020
).
35.
Z.
Yoshida
and
Y.
Giga
, “
On the Ohm–Navier–Stokes system in magnetohydrodynamics
,”
J. Math. Phys.
24
,
2860
2864
(
1983
).
36.
Z.
Yoshida
,
T.
Uchida
, and
N.
Inoue
, “
Time-asymptotic behavior of incompressible plasmas
,”
Prog. Theor. Phys.
72
,
1
14
(
1984
).
37.
D.
Faraco
,
S.
Lindberg
,
D.
MacTaggart
, and
A.
Valli
, “
On the proof of Taylor’s conjecture in multiply connected domains
,”
Appl. Math. Lett.
124
,
107654
(
2022
).
38.
L. C.
Evans
, “
Partial differential equations
,” in
Graduate Studies in Mathematics
, 2nd ed. (
American Mathematical Society
,
Providence, RI
,
2010
), Vol.
19
, p.
xxii+749
.
39.
H. K.
Moffatt
, “
Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals
,”
J. Fluid Mech.
159
,
359
378
(
1985
).
40.
M.
Núñez
, “
The limit states of magnetic relaxation
,”
J. Fluid Mech.
580
,
251
260
(
2007
).
You do not currently have access to this content.