The U(1) Chern–Simons theory can be extended to a topological U(1)n theory by taking a combination of Chern–Simons and BF actions, the mixing being achieved with the help of a collection of integer coupling constants. Based on the Deligne–Beilinson cohomology, a partition function can then be computed for such a U(1)n Chern–Simons theory. This partition function is clearly a topological invariant of the closed oriented three-manifold on which the theory is defined. Then, by applying a reciprocity formula a new expression of this invariant is obtained which should be a Reshetikhin–Turaev invariant. Finally, a duality between U(1)n Chern–Simons theories is demonstrated.

1.
S.-S.
Chern
and
J.
Simons
, “
Characteristic forms and geometric invariants
,”
Ann. Math.
99
,
48
69
(
1974
).
2.
A. S.
Schwarz
, “
The partition function of degenerate quadratic functional and Ray-Singer invariants
,”
Lett. Math. Phys.
2
,
247
252
(
1978
).
3.
E.
Witten
, “
Supersymmetry and Morse theory
,”
J. Differ. Geom.
17
,
661
692
(
1982
).
4.
S. K.
Donaldson
, “
An application of gauge theory to four-dimensional topology
,”
J. Differ. Geom.
18
,
285
299
(
1983
).
5.
M.
Atiyah
, “
New invariants of three and four dimensional manifolds
,” in
The Mathematical Heritage of Hermann Weyl
(
AMS
,
1987
), pp.
285
299
.
6.
G.
Segal
, “
Topological structures in string theory
,”
Philos. Trans. R. Soc., A
359
,
1389
1398
(
2001
).
7.
E.
Witten
, “
Quantum field theory and the Jones polynomial
,”
Commun. Math. Phys.
121
,
351
399
(
1989
).
8.
M.
Manoliu
, “
Abelian Chern–Simons theory. I. A topological quantum field theory
,”
J. Math. Phys.
39
,
170
206
(
1998
).
9.
M.
Manoliu
, “
Abelian Chern–Simons theory. II. A functional integral approach
,”
J. Math. Phys.
39
,
207
217
(
1998
).
10.
S.
Gukov
,
E.
Martinec
,
G.
Moore
, and
A.
Strominger
, “
Chern-Simons gauge theory and the AdS3/CFT2 correspondence
,” in
From Fields to Strings: Circumnavigating Theoretical Physics
(
World Scientific
,
2005
), pp.
1606
1647
.
11.
D.
Belov
and
G.
Moore
, “
Classification of abelian spin Chern-Simons theories
,” arXiv:hep-th/0505235 (
2005
).
12.
M.
Bauer
,
G.
Girardi
,
R.
Stora
, and
F.
Thuillier
, “
A class of topological actions
,”
J. High Energy Phys.
2005
(
08
),
027
; arXiv:hep-th/0406221.
13.
E.
Guadagnini
and
F.
Thuillier
, “
Deligne-Beilinson cohomology and abelian link invariants
,”
Symmetry, Integrability Geom.: Methods Appl.
4
,
078
(
2008
); arXiv:0801.1445.
14.
E.
Guadagnini
and
F.
Thuillier
, “
Three-manifold invariant from functional integration
,”
J. Math. Phys.
54
,
082302
(
2013
); arXiv:1301.6407.
15.
E.
Guadagnini
and
F.
Thuillier
, “
Path-integral invariants in abelian Chern–Simons theory
,”
Nucl. Phys. B
882
,
450
484
(
2014
); arXiv:1402.3140.
16.
P.
Mathieu
and
F.
Thuillier
, “
Abelian BF theory and Turaev-Viro invariant
,”
J. Math. Phys.
57
,
022306
(
2016
); arXiv:1509.04236.
17.
P.
Mathieu
and
F.
Thuillier
, “
A reciprocity formula from abelian BF and Turaev–Viro theories
,”
Nucl. Phys. B
912
,
327
353
(
2016
); arXiv:1604.05761.
18.
M.
Tagaris
, “
U(1)×…×U(1) Chern-Simons theory
,” M.S. thesis,
ETH Zurich
,
2023
.
19.
F.
Deloup
and
V.
Turaev
, “
On reciprocity
,”
J. Pure Appl. Algebra
208
,
153
158
(
2007
).
20.
W. B. R.
Lickorish
, “
A representation of orientable combinatorial 3-manifolds
,”
Ann. Math.
76
,
531
540
(
1962
).
21.
A. H.
Wallace
, “
Modifications and cobounding manifolds
,”
Can. J. Math.
12
,
503
528
(
1960
).
22.
R.
Kirby
, “
A calculus for framed links in S3
,”
Invent. Math.
45
,
35
56
(
1978
).
23.
N.
Saveliev
,
Lectures on the Topology of 3-Manifolds: An Introduction to the Casson Invariant
,
De Gruyter Textbook
(
De Gruyter
,
2012
).
24.
D.
Moussard
, “
Realizing isomorphisms between first homology groups of closed 3-manifolds by Borromean surgeries
,”
J. Knot Theory Ramifications
24
,
1550024
(
2015
).
25.
Y.
Guo
and
L.
Yu
, “
Surgery on links with unknotted components and three-manifolds
,”
J. Knot Theory Ramifications
19
,
1645
1653
(
2010
).
26.
R.
Bott
and
L. W.
Tu
,
Differential Forms in Algebraic Topology
(
Springer Verlag
,
1982
).
27.
C. M.
Gordon
and
R. A.
Litherland
, “
On the signature of a link
,”
Invent. Math.
47
,
53
69
(
1978
).
28.
R. H.
Kyle
, “
Branched covering spaces and the quadratic forms of links
,”
Ann. Math.
59
,
539
548
(
1954
).
29.
R. H.
Kyle
, “
Branched covering spaces and the quadratic forms of links, II
,”
Ann. Math.
69
,
686
699
(
1959
).
30.
J.
Cheeger
and
J.
Simons
, “
Differential characters and geometric invariants
,” in
Geometry and Topology
,
Lecture Notes in Mathematics Vol 1167
(
Springer
,
1985
), pp.
50
80
.
31.
J.-L.
Brylinski
, “
Loop spaces, characteristic classes and geometric quantization
,” in
Progress in Mathematics
(
Birkhäuser Boston, Inc.
,
Boston, MA
,
1993
), Vol.
107
.
32.
R.
Harvey
,
B.
Lawson
, and
J.
Zweck
, “
The de Rham-Federer theory of differential characters and character duality
,”
Am. J. Math.
125
,
791
(
2003
); arXiv:math/0512251.
33.
M. J.
Hopkins
and
I. M.
Singer
, “
Quadratic functions in geometry, topology, and M-theory
,”
J. Differ. Geom.
70
,
329
452
(
2005
).
34.
J.
Simons
and
D.
Sullivan
, “
Axiomatic characterization of ordinary differential cohomology
,”
J. Topol.
1
(
1
),
45
56
(
2008
).
35.
E.
Høssjer
,
P.
Mathieu
, and
F.
Thuillier
, “
An extension of the U(1) BF theory, Turaev-Viro invariant and Drinfeld center construction. Part I: Quantum fields, quantum currents and Pontryagin duality,
arXiv:2212.12872 (2022).
36.
D.
Birmingham
,
M.
Blau
,
M.
Rakowski
, and
G.
Thompson
, “
Topological field theories
,”
Phys. Rep.
209
,
129
340
(
1991
).
37.
S.
Axelrod
and
I. M.
Singer
, “
Chern-Simons perturbation theory
,” in
International Conference on Differential Geometric Methods in Theoretical Physics
(
World Scientific
,
1991
), pp.
3
45
; arXiv:hep-th/9110056.
38.
R.
Dijkgraaf
and
E.
Witten
, “
Topological gauge theories and group cohomology
,”
Commun. Math. Phys.
129
,
393
429
(
1990
); http://projecteuclid.org/euclid.cmp/1104180750.
39.
D. S.
Freed
, “
Classical Chern-Simons theory, 1
,”
Adv. Math.
113
,
237
303
(
1995
).
40.
D. S.
Freed
, “
Classical Chern-Simons theory, Part 2
,”
Houston J. Math.
28
,
293
310
(
2002
).
41.
H.
Toda
, “
Cohomology of classifying spaces
,”
Adv. Stud. Pure Math.
9
,
75
108
(
1986
).
42.
V.
Turaev
, “
Reciprocity for Gauss sums on finite abelian groups
,”
Math. Proc. Cambridge Philos. Soc.
124
,
205
214
(
1998
).
43.
P.
Mathieu
and
F.
Thuillier
, “
Abelian Turaev-Virelizier theorem and U(1) BF surgery formulas
,”
J. Math. Phys.
58
,
102301
(
2017
); arXiv:1706.01845.
44.
L.
Gallot
,
E.
Pilon
, and
F.
Thuillier
, “
Higher dimensional abelian Chern-Simons theories and their link invariants
,”
J. Math. Phys.
54
,
022305
(
2013
).
You do not currently have access to this content.