The U(1) Chern–Simons theory can be extended to a topological U(1)n theory by taking a combination of Chern–Simons and BF actions, the mixing being achieved with the help of a collection of integer coupling constants. Based on the Deligne–Beilinson cohomology, a partition function can then be computed for such a U(1)n Chern–Simons theory. This partition function is clearly a topological invariant of the closed oriented three-manifold on which the theory is defined. Then, by applying a reciprocity formula a new expression of this invariant is obtained which should be a Reshetikhin–Turaev invariant. Finally, a duality between U(1)n Chern–Simons theories is demonstrated.
REFERENCES
1.
S.-S.
Chern
and J.
Simons
, “Characteristic forms and geometric invariants
,” Ann. Math.
99
, 48
–69
(1974
).2.
A. S.
Schwarz
, “The partition function of degenerate quadratic functional and Ray-Singer invariants
,” Lett. Math. Phys.
2
, 247
–252
(1978
).3.
E.
Witten
, “Supersymmetry and Morse theory
,” J. Differ. Geom.
17
, 661
–692
(1982
).4.
S. K.
Donaldson
, “An application of gauge theory to four-dimensional topology
,” J. Differ. Geom.
18
, 285
–299
(1983
).5.
M.
Atiyah
, “New invariants of three and four dimensional manifolds
,” in The Mathematical Heritage of Hermann Weyl
(AMS
, 1987
), pp. 285
–299
.6.
G.
Segal
, “Topological structures in string theory
,” Philos. Trans. R. Soc., A
359
, 1389
–1398
(2001
).7.
E.
Witten
, “Quantum field theory and the Jones polynomial
,” Commun. Math. Phys.
121
, 351
–399
(1989
).8.
M.
Manoliu
, “Abelian Chern–Simons theory. I. A topological quantum field theory
,” J. Math. Phys.
39
, 170
–206
(1998
).9.
M.
Manoliu
, “Abelian Chern–Simons theory. II. A functional integral approach
,” J. Math. Phys.
39
, 207
–217
(1998
).10.
S.
Gukov
, E.
Martinec
, G.
Moore
, and A.
Strominger
, “Chern-Simons gauge theory and the correspondence
,” in From Fields to Strings: Circumnavigating Theoretical Physics
(World Scientific
, 2005
), pp. 1606
–1647
.11.
D.
Belov
and G.
Moore
, “Classification of abelian spin Chern-Simons theories
,” arXiv:hep-th/0505235 (2005
).12.
M.
Bauer
, G.
Girardi
, R.
Stora
, and F.
Thuillier
, “A class of topological actions
,” J. High Energy Phys.
2005
(08
), 027
; arXiv:hep-th/0406221.13.
E.
Guadagnini
and F.
Thuillier
, “Deligne-Beilinson cohomology and abelian link invariants
,” Symmetry, Integrability Geom.: Methods Appl.
4
, 078
(2008
); arXiv:0801.1445.14.
E.
Guadagnini
and F.
Thuillier
, “Three-manifold invariant from functional integration
,” J. Math. Phys.
54
, 082302
(2013
); arXiv:1301.6407.15.
E.
Guadagnini
and F.
Thuillier
, “Path-integral invariants in abelian Chern–Simons theory
,” Nucl. Phys. B
882
, 450
–484
(2014
); arXiv:1402.3140.16.
P.
Mathieu
and F.
Thuillier
, “Abelian BF theory and Turaev-Viro invariant
,” J. Math. Phys.
57
, 022306
(2016
); arXiv:1509.04236.17.
P.
Mathieu
and F.
Thuillier
, “A reciprocity formula from abelian BF and Turaev–Viro theories
,” Nucl. Phys. B
912
, 327
–353
(2016
); arXiv:1604.05761.18.
19.
F.
Deloup
and V.
Turaev
, “On reciprocity
,” J. Pure Appl. Algebra
208
, 153
–158
(2007
).20.
W. B. R.
Lickorish
, “A representation of orientable combinatorial 3-manifolds
,” Ann. Math.
76
, 531
–540
(1962
).21.
A. H.
Wallace
, “Modifications and cobounding manifolds
,” Can. J. Math.
12
, 503
–528
(1960
).22.
R.
Kirby
, “A calculus for framed links in S3
,” Invent. Math.
45
, 35
–56
(1978
).23.
N.
Saveliev
, Lectures on the Topology of 3-Manifolds: An Introduction to the Casson Invariant
, De Gruyter Textbook
(De Gruyter
, 2012
).24.
D.
Moussard
, “Realizing isomorphisms between first homology groups of closed 3-manifolds by Borromean surgeries
,” J. Knot Theory Ramifications
24
, 1550024
(2015
).25.
Y.
Guo
and L.
Yu
, “Surgery on links with unknotted components and three-manifolds
,” J. Knot Theory Ramifications
19
, 1645
–1653
(2010
).26.
R.
Bott
and L. W.
Tu
, Differential Forms in Algebraic Topology
(Springer Verlag
, 1982
).27.
C. M.
Gordon
and R. A.
Litherland
, “On the signature of a link
,” Invent. Math.
47
, 53
–69
(1978
).28.
R. H.
Kyle
, “Branched covering spaces and the quadratic forms of links
,” Ann. Math.
59
, 539
–548
(1954
).29.
R. H.
Kyle
, “Branched covering spaces and the quadratic forms of links, II
,” Ann. Math.
69
, 686
–699
(1959
).30.
J.
Cheeger
and J.
Simons
, “Differential characters and geometric invariants
,” in Geometry and Topology
, Lecture Notes in Mathematics Vol 1167
(Springer
, 1985
), pp. 50
–80
.31.
J.-L.
Brylinski
, “Loop spaces, characteristic classes and geometric quantization
,” in Progress in Mathematics
(Birkhäuser Boston, Inc.
, Boston, MA
, 1993
), Vol. 107
.32.
R.
Harvey
, B.
Lawson
, and J.
Zweck
, “The de Rham-Federer theory of differential characters and character duality
,” Am. J. Math.
125
, 791
(2003
); arXiv:math/0512251.33.
M. J.
Hopkins
and I. M.
Singer
, “Quadratic functions in geometry, topology, and M-theory
,” J. Differ. Geom.
70
, 329
–452
(2005
).34.
J.
Simons
and D.
Sullivan
, “Axiomatic characterization of ordinary differential cohomology
,” J. Topol.
1
(1
), 45
–56
(2008
).35.
E.
Høssjer
, P.
Mathieu
, and F.
Thuillier
, “An extension of the U(1) BF theory, Turaev-Viro invariant and Drinfeld center construction. Part I: Quantum fields, quantum currents and Pontryagin duality,
” arXiv:2212.12872 (2022).36.
D.
Birmingham
, M.
Blau
, M.
Rakowski
, and G.
Thompson
, “Topological field theories
,” Phys. Rep.
209
, 129
–340
(1991
).37.
S.
Axelrod
and I. M.
Singer
, “Chern-Simons perturbation theory
,” in International Conference on Differential Geometric Methods in Theoretical Physics
(World Scientific
, 1991
), pp. 3
–45
; arXiv:hep-th/9110056.38.
R.
Dijkgraaf
and E.
Witten
, “Topological gauge theories and group cohomology
,” Commun. Math. Phys.
129
, 393
–429
(1990
); http://projecteuclid.org/euclid.cmp/1104180750.39.
D. S.
Freed
, “Classical Chern-Simons theory, 1
,” Adv. Math.
113
, 237
–303
(1995
).40.
D. S.
Freed
, “Classical Chern-Simons theory, Part 2
,” Houston J. Math.
28
, 293
–310
(2002
).41.
H.
Toda
, “Cohomology of classifying spaces
,” Adv. Stud. Pure Math.
9
, 75
–108
(1986
).42.
V.
Turaev
, “Reciprocity for Gauss sums on finite abelian groups
,” Math. Proc. Cambridge Philos. Soc.
124
, 205
–214
(1998
).43.
P.
Mathieu
and F.
Thuillier
, “Abelian Turaev-Virelizier theorem and U(1) BF surgery formulas
,” J. Math. Phys.
58
, 102301
(2017
); arXiv:1706.01845.44.
L.
Gallot
, E.
Pilon
, and F.
Thuillier
, “Higher dimensional abelian Chern-Simons theories and their link invariants
,” J. Math. Phys.
54
, 022305
(2013
).© 2025 Author(s). Published under an exclusive license by AIP Publishing.
2025
Author(s)
You do not currently have access to this content.