In this paper, we are concerned with the compressible micropolar fluid system in the critical Besov space. We will focus on the incompressible limit for volume viscosity λ → ∞, which is based on the results for the additional assumption that the strong solution of classical incompressible micropolar equations is global, supplemented with the divergence free projection of v0. The proof relies on the damping property of the linear system on the high-frequency regime and the parabolic property on the low-frequency regime.
REFERENCES
1.
A.
Eringen
, “Theory of micropolar fluids
,” Indiana Univ. Math. J.
16
, 1
–18
(1967
).2.
G. P.
Galdi
and S.
Rionero
, “A note on the existence and uniqueness of solutions of the micropolar fluid equations
,” Int. J. Eng. Sci.
15
, 105
–108
(1977
).3.
M. A.
Rojas-Medar
, “Magneto‐ micropolar fluid motion: Existence and uniqueness of strong solution
,” Math. Nachr.
188
, 301
–319
(1997
).4.
L. C. F.
Ferreira
and E. J.
Villamizar-Roa
, “Micropolar fluid system in a space of distributions and large time behavior
,” J. Math. Anal. Appl.
332
, 1425
–1445
(2007
).5.
Q.
Chen
and C.
Miao
, “Global well-posedness for the micropolar fluid system in critical besov spaces
,” J. Differ. Equations
252
, 2698
–2724
(2012
).6.
W.
Zhu
and J.
Zhao
, “Regularizing rate estimates for the 3-D incompressible micropolar fluid system in critical besov spaces
,” Appl. Anal.
99
, 428
–446
(2020
).7.
P.
Braz e Silva
, F. W.
Cruz
, M.
Loayza
, and M. A.
Rojas-Medar
, “Global unique solvability of nonhomogeneous asymmetric fluids: A Lagrangian approach
,” J. Differ. Equations
269
, 1319
–1348
(2020
).8.
H.
Maimaiti
and D.
Liu
, “The Gauge–Uzawa methods for incompressible fluids with microstructure
,” Math. Methods Appl. Sci.
47
, 4165
–4184
(2024
).9.
Z.
Song
, “Global dynamics of Kato’s solutions for the 3D incompressible micropolar system
,” J. Differ. Equations
403
, 158
–187
(2024
).10.
H.
Li
, “Global regularity for the 3D micropolar equations
,” Appl. Math. Lett.
92
, 70
–75
(2019
).11.
C. V.
Easwaran
and S. R.
Majumdar
, “A uniqueness theorem for compressible micropolar flows
,” Acta Mech.
68
, 185
–191
(1987
).12.
N.
Mujaković
, “One-dimensional flow of a compressible viscous micropolar fluid: A local existence theorem
,” Glas. Mat.
33
, 71
–91
(1998
).13.
N.
Mujaković
, “One-dimensional compressible viscous micropolar fluid model: Stabilization of the solution for the cauchy problem
,” Bound. Value Probl.
2010
, 796065
.14.
N.
Mujaković
, “Nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: Regularity of the solution
,” Bound. Value Probl.
2008
, 189748
.15.
I.
Dražić
and N.
Mujaković
, “3-D flow of a compressible viscous micropolar fluid with spherical symmetry: A local existence theorem
,” Bound. Value Probl.
2012
, 69
.16.
M.
Chen
, B.
Huang
, and J.
Zhang
, “Blowup criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum
,” Nonlinear Anal. Theory Methods Appl.
79
, 1
–11
(2013
).17.
M.
Chen
, “Blowup criterion for viscous, compressible micropolar fluids with vacuum
,” Nonlinear Anal.: Real World Appl.
13
, 850
–859
(2012
).18.
R.
Danchin
, “Global existence in critical spaces for compressible Navier-Stokes equations
,” Invent. Math.
141
, 579
–614
(2000
).19.
J.
Su
, “Incompressible limit of a compressible micropolar fluid model with general initial data
,” Nonlinear Anal.
132
, 1
–24
(2016
).20.
J.
Su
, “Low Mach number limit of a compressible micropolar fluid model
,” Nonlinear Anal.: Real World Appl.
38
, 21
–34
(2017
).21.
Q.
Liu
and P.
Zhang
, “Optimal time decay of the compressible micropolar fluids
,” J. Differ. Equations
260
, 7634
–7661
(2016
).22.
L.
Tong
, R.
Pan
, and Z.
Tan
, “Decay estimates of solutions to the compressible micropolar fluids system in
,” J. Differ. Equations
293
, 520
–552
(2021
).23.
M.
Zhang
, “Regularity and uniqueness of global solutions for the 3D compressible micropolar fluids
,” J. Math. Phys.
65
, 031501
(2024
).24.
L.
Huang
, Z.
Sun
, X.-G.
Yang
, and A.
Miranville
, “Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry
,” Commun. Pure Appl. Anal.
21
, 1595
(2022
).25.
Z.
Chen
and D.
Wang
, “Global stability of rarefaction waves for the 1D compressible micropolar fluid model with density-dependent viscosity and microviscosity coefficients
,” Nonlinear Anal.: Real World Appl.
58
, 103226
(2021
).26.
W.
Cui
and H.
Cai
, “On the existence and stability of stationary solutions for the compressible micropolar fluids
,” J. Math. Phys.
65
, 041505
(2024
).27.
X.
Hou
and Y.
Xu
, “A new blowup criterion to the cauchy problem for the three-dimensional compressible viscous micropolar fluids with vacuum
,” Acta Appl. Math.
190
, 9
(2024
).28.
J.
Su
, “Suitable weak solutions to the micropolar fluids model in a bounded domain
,” J. Math. Anal. Appl.
504
, 125406
(2021
).29.
X.
Hou
and H.
Peng
, “Global existence for a class of large solution to the three-dimensional micropolar fluid equations with vacuum
,” J. Math. Anal. Appl.
498
, 124931
(2021
).30.
M.
Caggio
, “Inviscid incompressible limit for compressible micro-polar fluids
,” Nonlinear Anal.
216
, 112695
(2022
).31.
R.
Danchin
and P. B.
Mucha
, “Compressible Navier–Stokes system: Large solutions and incompressible limit
,” Adv. Math.
320
, 904
–925
(2017
).32.
Z.
Song
, “The global well-posedness for the 3-D compressible micropolar system in the critical Besov space
,” Z. fur Angew. Math. Phys.
72
, 160
(2021
).33.
H.
Bahouri
, Fourier Analysis and Nonlinear Partial Differential Equations
(Springer
, 2011
).34.
J.-Y.
Chemin
, “Localization in fourier space and Navier-Stokes system. Phase space analysis of partial differential equations
,” Pisa
1
, 53
–136
(2004
).© 2025 Author(s). Published under an exclusive license by AIP Publishing.
2025
Author(s)
You do not currently have access to this content.