We study the long-time dynamics of stochastic Klein–Gordon–Schrödinger equations driven by infinite-dimensional nonlinear noise defined on integer set. Firstly, we formulate the stochastic lattice equations as an abstract system defined in an appropriated space of square-summable sequences, and then prove the existence and uniqueness of global solutions to the abstract system. To such solutions, we establish the uniform boundedness and uniform estimates on the tails of solutions, which are necessary to ensure the tightness of a family of probability distributions. Finally, we prove the existence of invariant measures for the stochastic lattice equations using the Krylov–Bogolyubov’s method.
REFERENCES
1.
J. P.
Keener
, “Propagation and its failure in coupled systems of discrete excitable cells
,” SIAM J. Appl. Math.
47
, 556
–572
(1987
).2.
R. L.
Winalow
, A. L.
Kimball
, and A.
Varghese
, “Simulating cardiac sinus and atrial network dynamics on connection machine
,” Physica D
64
, 281
–298
(1993
).3.
L. M.
Pecora
and T. L.
Carroll
, “Synchronization in chaotic systems
,” Phys. Rev. Lett.
64
, 821
–824
(1990
).4.
M.
Hillert
, “A solid-solution model for inhomogeneous systems
,” Acta Metall.
9
, 525
–535
(1961
).5.
R.
Kapral
, “Discrete models for chemically reacting systems
,” J. Math. Chem.
6
, 113
–163
(1991
).6.
T.
Erneux
and N.
Grégoire
, “Propagating waves in discrete bistable reaction-diffusion systems
,” Physica D
67
, 237
–244
(1993
).7.
S. N.
Chow
and J. M.
Paret
, “Pattern formation and spatial chaos in lattice dynamical systems
,” IEEE Trans. Circuits Systems I Fund. Theory Appl.
42
, 746
–756
(1995
).8.
S. N.
Chow
, J. M.
Paret
, and E. S.
Van Vleck
, “Pattern formation and spatial chaos in spatially discrete evolution equations
,” Random Comput. Dynam.
4
, 109
–178
(1996
).9.
L. O.
Chua
and T.
Roska
, “The CNN paradigm
,” IEEE Trans. Circuits Systems I Fund. Theory Appl.
40
, 147
–156
(1993
).10.
L. O.
Chua
and L.
Yang
, “Cellular neural networks: Theory
,” IEEE Trans. Circuits Syst.
35
, 1257
–1272
(1988
).11.
J. S.
Guo
and C. C.
Wu
, “Uniqueness and stability of traveling waves for periodic monostable lattice dynamical system
,” J. Differ. Equ.
246
, 3818
–3833
(2009
).12.
X. Y.
Han
and P. E.
Kloeden
, “Non-autonomous lattice systems with switching effects and delayed recovery
,” J. Differ. Equ.
261
, 2986
–3009
(2016
).13.
X. Y.
Han
and P. E.
Kloeden
, “Asymptotic behavior of a neural field lattice model with a Heaviside operator
,” Physica D
389
, 1
–12
(2019
).14.
C. B.
Li
and J. C.
Sprott
, “An infinite 3-D quasiperiodic lattice of chaotic attractors
,” Phys. Lett. A
382
, 581
–587
(2018
).15.
W. W.
Lin
and Y. Q.
Wang
, “Proof of synchronized chaotic behaviors in coupled map lattices
,” Int. J. Bifurc. Chaos
21
, 1493
–1500
(2011
).16.
B.
Wang
, “Dynamics of systems on infinite lattices
,” J. Differ. Equ.
221
, 224
–245
(2006
).17.
S.
Zhou
and X. Y.
Han
, “Pullback exponential attractors for non-autonomous lattice systems
,” J. Dyn. Differ. Equ.
24
, 601
–631
(2012
).18.
P. W.
Bates
, K.
Lu
, and B.
Wang
, “Attractors for lattice dynamical systems
,” Int. J. Bifurc. Chaos
11
, 143
–153
(2001
).19.
W. J.
Beyn
and S. Y.
Pilyugin
, “Attractors of reaction diffusion systems on infinite lattices
,” J. Dyn. Differ. Equ.
15
, 485
–515
(2003
).20.
T.
Caraballo
, F.
Morillas
, and J.
Valero
, “Asymptotic behaviour of a logistic lattice system
,” Discrete Contin. Dyn. Syst.
34
, 4019
–4037
(2014
).21.
X.
Han
, P. E.
Kloden
, and B.
Usman
, “Upper semi-continuous convergence of attractors for a Hopfield-type lattice model
,” Nonlinearity
33
, 1881
–1906
(2020
).22.
C. D.
Zhao
and S. F.
Zhou
, “Compact kernel sections for nonautonomous Klein–Gordon–Schrödinger equations on infinite lattices
,” J. Math. Anal. Appl.
332
, 32
–56
(2007
).23.
C. D.
Zhao
, G.
Xue
, and G.
Lukaszewicz
, “Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations
,” Discrete Contin. Dyn. Syst. Ser. B
23
, 4021
–4044
(2018
).24.
B.
Wang
, “Dynamics of stochastic reaction–diffusion lattice systems driven by nonlinear noise
,” J. Math. Anal. Appl.
477
, 104
–132
(2019
).25.
R.
Wang
, “Long-time dynamics of stochastic lattice plate equations with nonlinear noise and damping
,” J. Dyn. Differ. Equ.
33
, 767
–803
(2021
).26.
B.
Wang
and R.
Wang
, “Asymptotic behavior of stochastic Schrödinger lattice systems driven by nonlinear noise
,” Stoch. Anal. Appl.
38
, 213
–237
(2020
).27.
R.
Wang
and B.
Wang
, “Global well-posedness and long-term behavior of discrete reaction-diffusion equations driven by superlinear noise
,” Stoch. Anal. Appl.
39
, 667
–696
(2020
).28.
R.
Wang
and B.
Wang
, “Random dynamics of p-Laplacian lattice systems driven by infinite-dimensional nonlinear noise
,” Stoch. Process. their Appl.
130
, 7431
–7462
(2020
).29.
Z.
Chen
, X.
Li
, and B.
Wang
, “Invariant measures of stochastic delay lattice systems
,” Discrete Contin. Dyn. Syst. - B
26
, 3235
–3269
(2021
).30.
Z.
Chen
and B.
Wang
, “Weak mean attractors and invariant measures for stochastic Schrödinger delay lattice systems
,” J. Dyn. Differ. Equ.
35
, 3201
(2021
).31.
D. S.
Li
, B. X.
Wang
, and X. H.
Wang
, “Periodic measures of stochastic delay lattice systems
,” J. Differ. Equ.
272
, 74
–104
(2021
).32.
D. S.
Li
, B. X.
Wang
, and X. H.
Wang
, “Limiting behavior of invariant measures of stochastic delay lattice systems
,” J. Dyn. Differ. Equ.
34
, 1453
–1487
(2022
).33.
T.
Caraballo
, X. Y.
Han
, B.
Schmalfuss
, and J.
Valero
, “Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise
,” Nonlinear Anal.
130
, 255
–278
(2016
).34.
T.
Caraballo
, F.
Morillas
, and J.
Valero
, “Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities
,” J. Differ. Equ.
253
, 667
–693
(2012
).35.
A.
Gu
and Y. R.
Li
, “Dynamic behavior of stochastic p-Laplacian-type lattice equations
,” Stoch. Dyn.
17
, 1750040
(2017
).36.
X. Y.
Han
, W. X.
Shen
, and S. F.
Zhou
, “Random attractors for stochastic lattice dynamical systems in weighted spaces
,” J. Differ. Equ.
250
, 1235
–1266
(2011
).37.
R.
Wang
and Y. R.
Li
, “Regularity and backward compactness of attractors for non-autonomous lattice systems with random coefficients
,” Appl. Math. Comput.
354
, 86
–102
(2019
).38.
X. Y.
Han
, “Random attractors for second order stochastic lattice dynamical systems with multiplicative noise in weighted spaces
,” Stoch. Dyn.
12
, 1150024
(2012
).39.
S. F.
Zhou
and L.
Wei
, “A random attractor for a stochastic second order lattice system with random coupled coefficients
,” J. Math. Anal. Appl.
395
, 42
–55
(2012
).40.
I.
Fukuda
and M.
Tsutsumi
, “On coupled Klein-Gordon-Schrödinger equations, II
,” J. Math. Anal. Appl.
66
, 358
–378
(1978
).41.
B.
Guo
and C.
Miao
, “Asymptotic behavior of coupled Klein-Gordon-Schrödinger equations
,” Sci. China Ser. A
25
, 705
–714
(1995
).42.
N.
Hayashi
and W.
von Wahl
, “On the global strong solutions of coupled Klein-Gordon-Schrödinger equations
,” J. Math. Soc. Jpn.
39
, 489
–497
(1987
).43.
R.
Wang
and B.
Wang
, “Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise
,” Discrete Contin. Dyn. Syst. - B
25
, 2461
–2493
(2020
).© 2025 Author(s). Published under an exclusive license by AIP Publishing.
2025
Author(s)
You do not currently have access to this content.