We study the long-time dynamics of stochastic Klein–Gordon–Schrödinger equations driven by infinite-dimensional nonlinear noise defined on integer set. Firstly, we formulate the stochastic lattice equations as an abstract system defined in an appropriated space of square-summable sequences, and then prove the existence and uniqueness of global solutions to the abstract system. To such solutions, we establish the uniform boundedness and uniform estimates on the tails of solutions, which are necessary to ensure the tightness of a family of probability distributions. Finally, we prove the existence of invariant measures for the stochastic lattice equations using the Krylov–Bogolyubov’s method.

1.
J. P.
Keener
, “
Propagation and its failure in coupled systems of discrete excitable cells
,”
SIAM J. Appl. Math.
47
,
556
572
(
1987
).
2.
R. L.
Winalow
,
A. L.
Kimball
, and
A.
Varghese
, “
Simulating cardiac sinus and atrial network dynamics on connection machine
,”
Physica D
64
,
281
298
(
1993
).
3.
L. M.
Pecora
and
T. L.
Carroll
, “
Synchronization in chaotic systems
,”
Phys. Rev. Lett.
64
,
821
824
(
1990
).
4.
M.
Hillert
, “
A solid-solution model for inhomogeneous systems
,”
Acta Metall.
9
,
525
535
(
1961
).
5.
R.
Kapral
, “
Discrete models for chemically reacting systems
,”
J. Math. Chem.
6
,
113
163
(
1991
).
6.
T.
Erneux
and
N.
Grégoire
, “
Propagating waves in discrete bistable reaction-diffusion systems
,”
Physica D
67
,
237
244
(
1993
).
7.
S. N.
Chow
and
J. M.
Paret
, “
Pattern formation and spatial chaos in lattice dynamical systems
,”
IEEE Trans. Circuits Systems I Fund. Theory Appl.
42
,
746
756
(
1995
).
8.
S. N.
Chow
,
J. M.
Paret
, and
E. S.
Van Vleck
, “
Pattern formation and spatial chaos in spatially discrete evolution equations
,”
Random Comput. Dynam.
4
,
109
178
(
1996
).
9.
L. O.
Chua
and
T.
Roska
, “
The CNN paradigm
,”
IEEE Trans. Circuits Systems I Fund. Theory Appl.
40
,
147
156
(
1993
).
10.
L. O.
Chua
and
L.
Yang
, “
Cellular neural networks: Theory
,”
IEEE Trans. Circuits Syst.
35
,
1257
1272
(
1988
).
11.
J. S.
Guo
and
C. C.
Wu
, “
Uniqueness and stability of traveling waves for periodic monostable lattice dynamical system
,”
J. Differ. Equ.
246
,
3818
3833
(
2009
).
12.
X. Y.
Han
and
P. E.
Kloeden
, “
Non-autonomous lattice systems with switching effects and delayed recovery
,”
J. Differ. Equ.
261
,
2986
3009
(
2016
).
13.
X. Y.
Han
and
P. E.
Kloeden
, “
Asymptotic behavior of a neural field lattice model with a Heaviside operator
,”
Physica D
389
,
1
12
(
2019
).
14.
C. B.
Li
and
J. C.
Sprott
, “
An infinite 3-D quasiperiodic lattice of chaotic attractors
,”
Phys. Lett. A
382
,
581
587
(
2018
).
15.
W. W.
Lin
and
Y. Q.
Wang
, “
Proof of synchronized chaotic behaviors in coupled map lattices
,”
Int. J. Bifurc. Chaos
21
,
1493
1500
(
2011
).
16.
B.
Wang
, “
Dynamics of systems on infinite lattices
,”
J. Differ. Equ.
221
,
224
245
(
2006
).
17.
S.
Zhou
and
X. Y.
Han
, “
Pullback exponential attractors for non-autonomous lattice systems
,”
J. Dyn. Differ. Equ.
24
,
601
631
(
2012
).
18.
P. W.
Bates
,
K.
Lu
, and
B.
Wang
, “
Attractors for lattice dynamical systems
,”
Int. J. Bifurc. Chaos
11
,
143
153
(
2001
).
19.
W. J.
Beyn
and
S. Y.
Pilyugin
, “
Attractors of reaction diffusion systems on infinite lattices
,”
J. Dyn. Differ. Equ.
15
,
485
515
(
2003
).
20.
T.
Caraballo
,
F.
Morillas
, and
J.
Valero
, “
Asymptotic behaviour of a logistic lattice system
,”
Discrete Contin. Dyn. Syst.
34
,
4019
4037
(
2014
).
21.
X.
Han
,
P. E.
Kloden
, and
B.
Usman
, “
Upper semi-continuous convergence of attractors for a Hopfield-type lattice model
,”
Nonlinearity
33
,
1881
1906
(
2020
).
22.
C. D.
Zhao
and
S. F.
Zhou
, “
Compact kernel sections for nonautonomous Klein–Gordon–Schrödinger equations on infinite lattices
,”
J. Math. Anal. Appl.
332
,
32
56
(
2007
).
23.
C. D.
Zhao
,
G.
Xue
, and
G.
Lukaszewicz
, “
Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations
,”
Discrete Contin. Dyn. Syst. Ser. B
23
,
4021
4044
(
2018
).
24.
B.
Wang
, “
Dynamics of stochastic reaction–diffusion lattice systems driven by nonlinear noise
,”
J. Math. Anal. Appl.
477
,
104
132
(
2019
).
25.
R.
Wang
, “
Long-time dynamics of stochastic lattice plate equations with nonlinear noise and damping
,”
J. Dyn. Differ. Equ.
33
,
767
803
(
2021
).
26.
B.
Wang
and
R.
Wang
, “
Asymptotic behavior of stochastic Schrödinger lattice systems driven by nonlinear noise
,”
Stoch. Anal. Appl.
38
,
213
237
(
2020
).
27.
R.
Wang
and
B.
Wang
, “
Global well-posedness and long-term behavior of discrete reaction-diffusion equations driven by superlinear noise
,”
Stoch. Anal. Appl.
39
,
667
696
(
2020
).
28.
R.
Wang
and
B.
Wang
, “
Random dynamics of p-Laplacian lattice systems driven by infinite-dimensional nonlinear noise
,”
Stoch. Process. their Appl.
130
,
7431
7462
(
2020
).
29.
Z.
Chen
,
X.
Li
, and
B.
Wang
, “
Invariant measures of stochastic delay lattice systems
,”
Discrete Contin. Dyn. Syst. - B
26
,
3235
3269
(
2021
).
30.
Z.
Chen
and
B.
Wang
, “
Weak mean attractors and invariant measures for stochastic Schrödinger delay lattice systems
,”
J. Dyn. Differ. Equ.
35
,
3201
(
2021
).
31.
D. S.
Li
,
B. X.
Wang
, and
X. H.
Wang
, “
Periodic measures of stochastic delay lattice systems
,”
J. Differ. Equ.
272
,
74
104
(
2021
).
32.
D. S.
Li
,
B. X.
Wang
, and
X. H.
Wang
, “
Limiting behavior of invariant measures of stochastic delay lattice systems
,”
J. Dyn. Differ. Equ.
34
,
1453
1487
(
2022
).
33.
T.
Caraballo
,
X. Y.
Han
,
B.
Schmalfuss
, and
J.
Valero
, “
Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise
,”
Nonlinear Anal.
130
,
255
278
(
2016
).
34.
T.
Caraballo
,
F.
Morillas
, and
J.
Valero
, “
Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities
,”
J. Differ. Equ.
253
,
667
693
(
2012
).
35.
A.
Gu
and
Y. R.
Li
, “
Dynamic behavior of stochastic p-Laplacian-type lattice equations
,”
Stoch. Dyn.
17
,
1750040
(
2017
).
36.
X. Y.
Han
,
W. X.
Shen
, and
S. F.
Zhou
, “
Random attractors for stochastic lattice dynamical systems in weighted spaces
,”
J. Differ. Equ.
250
,
1235
1266
(
2011
).
37.
R.
Wang
and
Y. R.
Li
, “
Regularity and backward compactness of attractors for non-autonomous lattice systems with random coefficients
,”
Appl. Math. Comput.
354
,
86
102
(
2019
).
38.
X. Y.
Han
, “
Random attractors for second order stochastic lattice dynamical systems with multiplicative noise in weighted spaces
,”
Stoch. Dyn.
12
,
1150024
(
2012
).
39.
S. F.
Zhou
and
L.
Wei
, “
A random attractor for a stochastic second order lattice system with random coupled coefficients
,”
J. Math. Anal. Appl.
395
,
42
55
(
2012
).
40.
I.
Fukuda
and
M.
Tsutsumi
, “
On coupled Klein-Gordon-Schrödinger equations, II
,”
J. Math. Anal. Appl.
66
,
358
378
(
1978
).
41.
B.
Guo
and
C.
Miao
, “
Asymptotic behavior of coupled Klein-Gordon-Schrödinger equations
,”
Sci. China Ser. A
25
,
705
714
(
1995
).
42.
N.
Hayashi
and
W.
von Wahl
, “
On the global strong solutions of coupled Klein-Gordon-Schrödinger equations
,”
J. Math. Soc. Jpn.
39
,
489
497
(
1987
).
43.
R.
Wang
and
B.
Wang
, “
Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise
,”
Discrete Contin. Dyn. Syst. - B
25
,
2461
2493
(
2020
).
You do not currently have access to this content.