In the present paper, we consider the reversible system ẋ=ω0+f(x,y), ẏ=g(x,y), where xTd, y ∽ 0 ∈ Rd, ω0 is Diophantine, f(x, y) = O(y), g(x, y) = O(y2) and f, g are reversible with respect to the involution G: (x, y) ↦ (−x, y), that is, f(−x, y) = f(x, y), g(−x, y) = −g(x, y). We study the accumulation of an analytic invariant torus Γ0 of the reversible system with Diophantine frequency ω0 by other invariant tori. We will prove that if the Birkhoff normal form around Γ0 is 0-degenerate, then Γ0 is accumulated by other analytic invariant tori, the Lebesgue measure of the union of these tori being positive and the density of the union of these tori at Γ0 being one. We will also prove that if the Birkhoff normal form around Γ0 is j-degenerate (1 ≤ jd − 1) and condition (1.6) is satisfied, then through Γ0 there passes an analytic subvariety of dimension d + j foliated into analytic invariant tori with frequency vector ω0. If the Birkhoff normal form around Γ0 is d − 1-degenerate, we will prove a stronger result, that is, a full neighborhood of Γ0 is foliated into analytic invariant tori with frequency vectors proportional to ω0.

1.
L. H.
Eliasson
,
B.
Fayad
, and
R.
Krikorian
, “
Around the stability of KAM tori
,”
Duke Math. J.
164
(
9
),
1733
1775
(
2015
).
2.
H.
Rüssmann
, “
Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung
,”
Math. Ann.
169
,
55
72
(
1967
).
3.
M.
Herman
, “
Some open problems in dynamical systems
,” in
Proceedings of the International Congress of Mathematicians
(
Documenta Mathematica
,
Berlin
,
1998
), Vol.
II
, pp.
797
808
Doc. Math. 1998 Extra.
4.
A.
Bounemoura
, “
Non-degenerate Liouville tori are KAM stable
,”
Adv. Math.
292
,
42
51
(
2016
).
5.
J.
Moser
, “
Combination tones for Duffing’s equation
,”
Commun. Pure Appl. Math.
18
,
167
181
(
1965
).
6.
J.
Moser
,
Stable and Random Motion in Dynamic Systems
,
Ann. of Math. Studies
(
Princeton Uni. Press
,
Princeton, NJ
,
1973
).
7.
V. I.
Arnold
,
Reversible Systems, Nonlinear and Turbulent Processes in Physics
(
Acad. Publ.
,
New York
,
1984
), pp.
1161
1174
.
8.
V. I.
Arnold
and
M. B.
Sevryuk
,
Oscillations and Bifurcations in Reversible Systems, Nonlinear Phenomena in Plasma Physics and Hydrodynamics
(
Mir Publishers
,
Moscow
,
1986
).
9.
H. W.
Broer
,
G. B.
Huitema
, and
M. B.
Sevryuk
,
Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos
(
Springer
,
Berlin
,
1996
).
10.
M. B.
Sevryuk
,
Reversible Systems
,
Lecture Notes in Math.
(
Springer-Verlag
,
New York/Berlin
,
1986
), Vol.
1211
.
11.
M. B.
Sevryuk
, “
The iteration-approximation decoupling in the reversible KAM theory
,”
Chaos
5
(
3
),
552
565
(
1995
).
12.
M. B.
Sevryuk
, “
The finite-dimensional reversible KAM theory
,”
Physica D
112
(
1–2
),
132
147
(
1998
).
13.
M. B.
Sevryuk
, “
The reversible context 2 in KAM theory: The first steps
,”
Regular Chaotic Dyn.
16
(
1–2
),
24
38
(
2011
).
14.
J.
Zhang
, “
On lower dimensional invariant tori in Cd reversible systems
,”
Chin. Ann. Math., Ser. B
29
(
5
),
459
486
(
2008
).
15.
J.
Li
,
J.
Qi
, and
X.
Yuan
, “
KAM theorem for reversible mapping of low smoothness with application
,”
Discrete Contin. Dyn. Syst.
43
(
10
),
3563
3581
(
2023
).
16.
B.
Liu
, “
An application of KAM theorem of reversible systems
,”
Sci. China Ser. A.
34
(
9
),
1068
1078
(
1991
).
17.
B.
Liu
and
F.
Zanolin
, “
Boundedness of solutions of nonlinear differential equations
,”
J. Differ. Equ.
144
,
66
98
(
1998
).
18.
B.
Liu
, “
Invariant curves of quasi-periodic reversible mappings
,”
Nonlinearity
18
,
685
701
(
2005
).
19.
D.
Piao
and
W.
Li
, “
Boundedness of solutions for reversible system via Moser’s twist theorem
,”
J. Math. Anal. Appl.
341
(
2
),
1224
1235
(
2008
).
20.
R.
Yuan
and
X.
Yuan
, “
Boundedness of solutions for a class of nonlinear differential equations of second order via Moser’s twist theorem
,”
Nonlinear Anal.: Theory Methods Appl.
46
(
8
),
1073
1087
(
2001
).
You do not currently have access to this content.