In this paper, a stochastic strongly damped wave equation with polynomial drift and diffusion terms is studied. First we prove there exists a unique solution for this equation by using a truncation method. Then, we establish the tightness of a family of probability distributions of solutions and obtain the existence of invariant measures by introducing an appropriate Lyapunov function and utilizing a decomposition approach. Finally, the regularity of the invariant measure is investigated, that is, the invariant measure is supported by a regular space.

1.
A. N.
Carvalho
and
J. W.
Cholewa
, “
Local well posedness for strongly damped wave equations with critical nonlinearities
,”
Bull. Aust. Math. Soc.
66
(
3
),
443
463
(
2002
).
2.
J.
Shatah
and
M.
Struwe
, “
Well-posedness in the energy space for semilinear wave equations with critical growth
,”
Int. Math. Res. Not.
7
,
303
309
(
1994
).
3.
Z.
Yang
and
P.
Ding
, “
Longtime dynamics of Kirchhoff equation with strong damping and critical nonlinearity on RN
,”
J. Math. Anal. Appl.
434
(
2
),
1826
1851
(
2016
).
4.
S.
Zhou
, “
Attractors for strongly damped wave equations with critical exponent
,”
Appl. Math. Lett.
16
(
8
),
1307
1314
(
2003
).
5.
P.
Chow
, “
Stochastic wave equations with polynomial nonlinearity
,”
Ann. Appl. Probab.
12
(
1
),
361
381
(
2002
).
6.
Y.
Li
,
B.
Li
, and
X.
Li
, “
Uniform random attractors for a non-autonomous stochastic strongly damped wave equation on RN
,”
Z. Angew. Math. Phys.
73
(
3
),
106
(
2022
).
7.
M.
Ondreját
, “
Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process
,”
J. Evol. Equations
4
(
2
),
169
191
(
2004
).
8.
S.
Peszat
, “
The Cauchy problem for a nonlinear stochastic wave equation in any dimension
,”
J. Evol. Equations
2
(
3
),
383
394
(
2002
).
9.
B.
Wang
, “
Well-posedness and long term behavior of supercritical wave equations driven by nonlinear colored noise on RN
,”
J. Funct. Anal.
283
(
2
),
109498
(
2022
).
10.
Z.
Wang
and
S.
Zhou
, “
Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise
,”
Discrete Contin. Dyn. Syst. Ser. A
37
(
5
),
2787
2812
(
2017
).
11.
Z.
Wang
and
L.
Zhang
, “
Finite fractal dimension of random attractor for stochastic non-autonomous strongly damped wave equation
,”
Comput. Math. Appl.
75
(
9
),
3343
3357
(
2018
).
12.
N.
Krylov
and
N.
Bogolyubov
, “
La théorie générale de la mesure dans son application à l’étude des systémes de la Mécanique non linéaire
,”
Ann. Math
38
,
65
113
(
1937
).
13.
Z.
Chen
and
B.
Wang
, “
Limit measures and ergodicity of fractional stochastic reaction–diffusion equations on unbounded domains
,”
Stochastics Dyn.
22
(
2
),
2140012
(
2022
).
14.
G.
Da Prato
and
J.
Zabczyk
,
Stochastic Equations in Infinite Dimensions
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1992
).
15.
Y.
Lin
,
Y.
Li
, and
D.
Li
, “
Periodic measures of impulsive stochastic neural networks lattice systems with delays
,”
J. Math. Phys.
63
(
12
),
122702
(
2022
).
16.
D.
Li
,
B.
Wang
, and
X.
Wang
, “
Periodic measures of stochastic delay lattice systems
,”
J. Differ. Equations
272
,
74
104
(
2021
).
17.
B.
Wang
, “
Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise
,”
J. Differ. Equations
268
(
1
),
1
59
(
2019
).
18.
H.
Bessaih
and
B.
Ferrario
, “
Statistical properties of stochastic 2D Navier-Stokes equations from linear models
,”
Discrete Contin. Dyn. Syst., Ser. B
21
(
9
),
2927
2947
(
2016
).
19.
V.
Barbu
and
G. D.
Prato
, “
The stochastic nonlinear damped wave equation
,”
Appl. Math. Optim.
46
(
2
),
125
141
(
2002
).
20.
K. R.
Parthasarathy
,
Probability Measures on Metric Spaces
(
Academic Press
,
New York; London
,
1967
).
21.
J. U.
Kim
, “
Periodic and invariant measures for stochastic wave equations
,”
Electron. J. Differ. Equations
5
,
30
(
2004
).
22.
J. U.
Kim
, “
On the stochastic wave equation with nonlinear damping
,”
Appl. Math. Optim.
58
(
1
),
29
67
(
2008
).
23.
Z.
Brzeźniak
,
M.
Ondreját
, and
J.
Seidler
, “
Invariant measures for stochastic nonlinear beam and wave equations
,”
J. Differ. Equations
260
(
5
),
4157
4179
(
2016
).
24.
V.
Barbu
,
G.
Da Prato
, and
L.
Tubaro
, “
Stochastic wave equations with dissipative damping
,”
Stochastic Processes Appl.
117
(
8
),
1001
1013
(
2007
).
25.
Y.
Jiang
,
X.
Wang
, and
Y.
Wang
, “
Stochastic wave equation of pure jumps: Existence, uniqueness and invariant measures
,”
Nonlinear Anal.: Theory, Methods Appl.
75
(
13
),
5123
5138
(
2012
).
26.
R.
Wang
and
Y.
Li
, “
Asymptotic behavior of stochastic discrete wave equations with nonlinear noise and damping
,”
J. Math. Phys.
61
(
5
),
052701
(
2020
).
27.
Z.
Yang
,
P.
Ding
, and
L.
Li
, “
Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity
,”
J. Math. Anal. Appl.
442
(
2
),
485
510
(
2016
).
28.
C.
Prevot
and
M.
Rockner
, “
A concise course on stochastic partial differential equations
,” in
Lecture Notes in Mathematics
(
Springer
,
Berlin
,
2007
).
29.
S. S.
Sritharan
and
P.
Sundar
, “
Large deviations for the two-dimensional Navier–Stokes equations with multiplicative noise
,”
Stochastic Processes Appl.
116
(
11
),
1636
1659
(
2006
).
You do not currently have access to this content.