We apply the well known Kovacic algorithm to generate Liouvillian (i.e., closed-form) solutions to the ordinary differential equation that governs the radial part of the separable, coupled to scalar curvature, massive scalar wave equation on a D-dimensional de Sitter background spacetime. The radial equation is simply related to the famous hypergeometric equation, and our work is carried out in this general setting. We find several families of infinite sets of special parameter values for which Liouvillian solutions exist, and we demonstrate how to generate these solutions recursively. The solutions are related to hypergeometric polynomials and in some cases can be constructed explicitly. For some of the families, the Liouvillian solutions exactly satisfy the boundary conditions for quasinormal modes, a fundamental set of damped, outgoing wave-functions that depend only on the background spacetime and scalar field parameters. In these families we obtain agreement with published results on the scalar quasinormal modes of the pure de Sitter spacetime. For other families, we establish conjectures regarding the factorization of the parameter constraints required for existence of Liouvillian solutions. Our results are consistent with published results on the hypergeometric equation and the well known Pöschl–Teller equation. Our new contributions are to demonstrate how to generate the hypergeometric Liouvillian solutions recursively, to completely solve the quasinormal mode problem with Liouvillian solutions, and to analyze the Liouvillian parameter constraints for the hypergeometric equation, including the case of the physical de Sitter parameters. This work contributes new knowledge to the fields of special functions and general relativity.

1.
B. P.
Abbott
et al, “
Observation of gravitational waves from a binary black hole merger
,”
Phys. Rev. Lett.
116
,
061102
(
2016
).
2.
K. D.
Kokkotas
and
B. G.
Schmidt
, “
Quasi-normal modes of stars and black holes
,”
Living Rev. Relativ.
2
,
2
(
1999
).
3.
S.
Ma
et al, “
Quasinormal-mode filters: A new approach to analyze the gravitational-wave ringdown of binary black-hole mergers
,”
Phys. Rev. D
106
,
084036
(
2021
).
4.
P.
Amaro-Seoane
et al, “
Astrophyics with the laser interferometer space antenna
,”
Living Rev. Relativ.
26
,
2
(
2023
).
5.
J. J.
Kovacic
, “
An algorithm for solving second order linear homogeneous differential equations
,”
J. Symbolic Comput.
2
,
3
(
1986
).
6.
M.
van der Put
and
M. F.
Singer
,
Galois Theory of Linear Differential Equations
(
Springer-Verlag
,
Berlin
,
2003
).
7.
W. E.
Couch
and
C. L.
Holder
, “
Liouvillian perturbations of black holes
,”
J. Math. Phys.
48
,
102502
(
2007
).
8.
W. E.
Couch
and
C. L.
Holder
, “
Liouvillian quasinormal modes of Reissner–Nordstrom black holes
,”
J. Math. Phys.
50
,
022503
(
2009
).
9.
W. E.
Couch
and
C. L.
Holder
, “
Liouvillian quasi-normal modes of Kerr-Newman black holes
,”
J. Math. Phys.
53
,
062502
(
2012
).
10.
E.
Melas
, “
On the Liouvillian solutions to the perturbation equations of the Schwarzschild black hole
,”
J. Math. Phys.
59
,
8
(
2017
).
11.
K. D.
Kokkotas
, “
Quasi-normal modes of the Kerr-Newman black hole
,”
Nuovo Cimento B
108
,
991
(
1993
).
12.
H. K.
Kunduri
,
J.
Lucietti
, and
H. S.
Reall
, “
Gravitational perturbations of higher dimensional rotating black holes: Tensor perturbations
,”
Phys. Rev. D
74
,
084021
(
2006
).
13.
Y.
Hatsuda
, “
Quasinormal modes of Kerr–de Sitter black holes via the Heun function
,”
Class. Quantum Grav.
38
,
025015
(
2020
).
14.
V.
Cardoso
,
J. P. S.
Lemos
, and
S.
Yoshida
, “
Quasinormal modes of Schwarzschild black holes in four and higher dimensions
,”
Phys. Rev. D
69
,
044004
(
2004
).
15.
E.
Berti
and
K. D.
Kokkotas
, “
Quasinormal modes of Reissner–Nordström–anti-de Sitter black holes: Scalar, electromagnetic, and gravitational perturbations
,”
Phys. Rev. D
67
,
064020
(
2003
).
16.
S.
Chandrasekhar
,
The Mathematical Theory of Black Holes
(
Oxford University Press
,
Oxford
,
1983
).
17.
A.
Lopez-Ortega
, “
Quasinormal modes of D-dimensional de Sitter spacetime
,”
Gen. Relativ. Gravitation
38
,
1565
(
2006
).
18.
D.-P.
Du
,
B.
Wang
, and
R.-K.
Su
, “
Quasinormal modes in pure de Sitter spacetimes
,”
Phys. Rev. D
70
,
064024
(
2004
).
19.
E.
Abdalla
,
K. H. C.
Castello-Branco
, and
A.
Lima-Santos
, “
Support of dS/CFT correspondence from space-time perturbations
,”
Phys. Rev. D
66
,
104018
(
2002
).
20.
S. Y.
Slavyanov
and
W.
Lay
,
Special Functions: A Unified Theory Based on Singularities
(
Oxford University Press
,
New York
,
2000
).
21.
A.
Duval
and
M.
Loday-Richaud
, “
Kovacic’s algorithm and its application to some families of special functions
,”
Appl. Algebra Eng., Commun. Comput.
3
,
211
(
1992
).
22.
T.
Kimura
, “
On Riemann’s equations which are solvable by quadratures
,”
Funkcialaj Ekvacioj
12
,
269
(
1969
).
23.
W. E.
Couch
and
R. J.
Torrence
, “
A class of wave equations with progressive wave solutions of finite order
,”
Phys. Lett. A
117
,
270
(
1986
).
24.
E.
Berti
,
V.
Cardoso
, and
M.
Casals
, “
Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions
,”
Phys. Rev. D
73
,
024013
(
2006
).
25.
K.-P.
Lu
,
W.
Li
, and
J.-H.
Huang
, “
Quasinormal modes and stability of higher dimensional rotating black holes under massive scalar perturbations
,”
Phys. Lett. B
845
,
138147
(
2023
).
26.
H.-c.
Kao
and
D.
Tomino
, “
Quasinormal modes of Kerr black holes in four and higher dimensions
,”
Phys. Rev. D
77
,
127503
(
2008
).
27.
L.
Manfredi
,
J.
Mureika
, and
J.
Moffat
, “
Quasinormal modes of modified gravity (MOG) black holes
,”
Phys. Lett. B
779
,
492
(
2018
).
28.
Y.
Zhao
,
X.
Ren
,
A.
Ilyas
,
E. N.
Saridakis
, and
Y.-F.
Cai
, “
Quasinormal modes of black holes in f(T) gravity
,”
J. Cosmol. Astropart. Phys.
2022
,
087
.
29.
D.
Bini
and
C.
Cherubini
, “
Algebraically special frequencies of NUT black holes
,”
Classical Quantum Gravity
21
,
4523
(
2004
).
30.
Y.
Yang
,
D.
Liu
,
A.
Övgün
,
Z.-W.
Long
, and
Z.
Xu
, “
Quasinormal modes of Kerr-like black bounce spacetime
,” arXiv:gr-qc/2205.07530 (
2022
).
You do not currently have access to this content.