We investigate the entanglement properties in the symmetric subspace of N-partite d-dimensional systems (qudits). As it happens already for bipartite diagonal symmetric states, also in the multipartite case the local dimension d plays a crucial role. Here, we demonstrate that there is no bound entanglement for d = 3, 4 and N = 3. Using different techniques, we present strong analytical evidence that no bound entanglement exist for any N if d ≤ 4. Interestingly, bound entanglement of diagonal symmetric states exist for any number of parties, N ≥ 2, and local dimensions d ≥ 5.
REFERENCES
1.
R.
Horodecki
, P.
Horodecki
, M.
Horodecki
, and K.
Horodecki
, “Quantum entanglement
,” Rev. Mod. Phys.
81
(2
), 865
(2009
).2.
R.
Jozsa
and N.
Linden
, “On the role of entanglement in quantum-computational speed-up
,” Proc. R. Soc. London, Ser. A
459
(2036
), 2011
–2032
(2003
).3.
J.
Yin
, Y.
Cao
, Y.-H.
Li
, J.-G.
Ren
, S.-K.
Liao
, L.
Zhang
, W.-Q.
Cai
, W.-Y.
Liu
, B.
Li
, H.
Dai
, M.
Li
, Y.-M.
Huang
, L.
Deng
, L.
Li
, Q.
Zhang
, N.-L.
Liu
, Y.-A.
Chen
, C.-Y.
Lu
, R.
Shu
, C.-Z.
Peng
, J.-Y.
Wang
, and J.-W.
Pan
, “Satellite-to-ground entanglement-based quantum key distribution
,” Phys. Rev. Lett.
119
, 200501
(2017
).4.
M.
Epping
, H.
Kampermann
, C.
macchiavello
, and D.
Bruß
, “Multi-partite entanglement can speed up quantum key distribution in networks
,” New J. Phys.
19
(9
), 093012
(2017
).5.
L.
Gurvits
, “Classical deterministic complexity of Edmonds’ problem and quantum entanglement
,” in Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing
(Association for Computing Machinery
, 2003
), pp. 10
–19
.6.
A.
Peres
, “Separability criterion for density matrices
,” Phys. Rev. Lett.
77
(8
), 1413
(1996
).7.
M.
Horodecki
, P.
Horodecki
, and R.
Horodecki
, “Separability of mixed states: Necessary and sufficient conditions
,” Phys. Lett. A
223
, 1
–8
(1996
).8.
G.
Tóth
and O.
Gühne
, “Entanglement and permutational symmetry
,” Phys. Rev. Lett.
102
(17
), 170503
(2009
).9.
L.
Chen
, D.
Chu
, L.
Qian
, and Y.
Shen
, “Separability of completely symmetric states in a multipartite system
,” Phys. Rev. A
99
, 032312
(2019
).10.
K.-C.
Ha
, “Comment on ‘Separability of completely symmetric states in a multipartite system
,’” Phys. Rev. A
104
, 016401
(2021
).11.
J. K.
Stockton
, J. M.
Geremia
, A. C.
Doherty
, and H.
Mabuchi
, Phys. Rev. A
67
, 022112
(2003
).12.
E.
Wolfe
and S.
Yelin
, “Certifying separability in symmetric mixed states of n qubits, and superradiance
,” Phys. Rev. Lett.
112
(14
), 140402
(2014
).13.
N.
Yu
, “Separability of a mixture of Dicke states
,” Phys. Rev. A
94
, 060101
(2016
).14.
J.
Tura
, A.
Aloy
, R.
Quesada
, M.
Lewenstein
, and A.
Sanpera
, “Separability of diagonal symmetric states: A quadratic conic optimization problem
,” Quantum
2
, 45
(2018
).15.
T.
Ichikawa
, T.
Sasaki
, I.
Tsutsui
, and N.
Yonezawa
, “Exchange symmetry and multipartite entanglement
,” Phys. Rev. A
78
(5
), 052105
(2008
).16.
P. H.
Diananda
, “On non-negative forms in real variables some or all of which are non-negative
,” Math. Proc. Cambridge Philos. Soc.
58
, 17
–25
(1962
).17.
C.
Marconi
, A.
Aloy
, J.
Tura
, and A.
Sanpera
, “Entangled symmetric states and copositive matrices
,” Quantum
5
, 561
(2021
).18.
R.
Quesada
, S.
Rana
, and A.
Sanpera
, “Entanglement and nonlocality in diagonal symmetric states of N qubits
,” Phys. Rev. A
95
(4
), 042128
(2017
).© 2025 Author(s). Published under an exclusive license by AIP Publishing.
2025
Author(s)
You do not currently have access to this content.