We investigate the entanglement properties in the symmetric subspace of N-partite d-dimensional systems (qudits). As it happens already for bipartite diagonal symmetric states, also in the multipartite case the local dimension d plays a crucial role. Here, we demonstrate that there is no bound entanglement for d = 3, 4 and N = 3. Using different techniques, we present strong analytical evidence that no bound entanglement exist for any N if d ≤ 4. Interestingly, bound entanglement of diagonal symmetric states exist for any number of parties, N ≥ 2, and local dimensions d ≥ 5.

1.
R.
Horodecki
,
P.
Horodecki
,
M.
Horodecki
, and
K.
Horodecki
, “
Quantum entanglement
,”
Rev. Mod. Phys.
81
(
2
),
865
(
2009
).
2.
R.
Jozsa
and
N.
Linden
, “
On the role of entanglement in quantum-computational speed-up
,”
Proc. R. Soc. London, Ser. A
459
(
2036
),
2011
2032
(
2003
).
3.
J.
Yin
,
Y.
Cao
,
Y.-H.
Li
,
J.-G.
Ren
,
S.-K.
Liao
,
L.
Zhang
,
W.-Q.
Cai
,
W.-Y.
Liu
,
B.
Li
,
H.
Dai
,
M.
Li
,
Y.-M.
Huang
,
L.
Deng
,
L.
Li
,
Q.
Zhang
,
N.-L.
Liu
,
Y.-A.
Chen
,
C.-Y.
Lu
,
R.
Shu
,
C.-Z.
Peng
,
J.-Y.
Wang
, and
J.-W.
Pan
, “
Satellite-to-ground entanglement-based quantum key distribution
,”
Phys. Rev. Lett.
119
,
200501
(
2017
).
4.
M.
Epping
,
H.
Kampermann
,
C.
macchiavello
, and
D.
Bruß
, “
Multi-partite entanglement can speed up quantum key distribution in networks
,”
New J. Phys.
19
(
9
),
093012
(
2017
).
5.
L.
Gurvits
, “
Classical deterministic complexity of Edmonds’ problem and quantum entanglement
,” in
Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing
(
Association for Computing Machinery
,
2003
), pp.
10
19
.
6.
A.
Peres
, “
Separability criterion for density matrices
,”
Phys. Rev. Lett.
77
(
8
),
1413
(
1996
).
7.
M.
Horodecki
,
P.
Horodecki
, and
R.
Horodecki
, “
Separability of mixed states: Necessary and sufficient conditions
,”
Phys. Lett. A
223
,
1
8
(
1996
).
8.
G.
Tóth
and
O.
Gühne
, “
Entanglement and permutational symmetry
,”
Phys. Rev. Lett.
102
(
17
),
170503
(
2009
).
9.
L.
Chen
,
D.
Chu
,
L.
Qian
, and
Y.
Shen
, “
Separability of completely symmetric states in a multipartite system
,”
Phys. Rev. A
99
,
032312
(
2019
).
10.
K.-C.
Ha
, “
Comment on ‘Separability of completely symmetric states in a multipartite system
,’”
Phys. Rev. A
104
,
016401
(
2021
).
11.
J. K.
Stockton
,
J. M.
Geremia
,
A. C.
Doherty
, and
H.
Mabuchi
,
Phys. Rev. A
67
,
022112
(
2003
).
12.
E.
Wolfe
and
S.
Yelin
, “
Certifying separability in symmetric mixed states of n qubits, and superradiance
,”
Phys. Rev. Lett.
112
(
14
),
140402
(
2014
).
13.
N.
Yu
, “
Separability of a mixture of Dicke states
,”
Phys. Rev. A
94
,
060101
(
2016
).
14.
J.
Tura
,
A.
Aloy
,
R.
Quesada
,
M.
Lewenstein
, and
A.
Sanpera
, “
Separability of diagonal symmetric states: A quadratic conic optimization problem
,”
Quantum
2
,
45
(
2018
).
15.
T.
Ichikawa
,
T.
Sasaki
,
I.
Tsutsui
, and
N.
Yonezawa
, “
Exchange symmetry and multipartite entanglement
,”
Phys. Rev. A
78
(
5
),
052105
(
2008
).
16.
P. H.
Diananda
, “
On non-negative forms in real variables some or all of which are non-negative
,”
Math. Proc. Cambridge Philos. Soc.
58
,
17
25
(
1962
).
17.
C.
Marconi
,
A.
Aloy
,
J.
Tura
, and
A.
Sanpera
, “
Entangled symmetric states and copositive matrices
,”
Quantum
5
,
561
(
2021
).
18.
R.
Quesada
,
S.
Rana
, and
A.
Sanpera
, “
Entanglement and nonlocality in diagonal symmetric states of N qubits
,”
Phys. Rev. A
95
(
4
),
042128
(
2017
).
You do not currently have access to this content.