We present and prove the Weyl-Kac type character formula for the irreducible highest weight modules over Borcherds-Bozec superalgebras with dominant integral highest weights.
REFERENCES
1.
V. G.
Kac
, “Simple irreducible graded Lie algebras of finite growth
,” Math. USSR-Izv.
2
, 1271
–1311
(1968
).2.
R. V.
Moody
, “A new class of Lie algebras
,” J. Algebra
10
, 211
–230
(1968
).3.
V. G.
Kac
, “Infninite dimensional Lie algebras and Dedekind’s η-function
,” Funct. Anal. Appl.
8
, 68
–70
(1974
).4.
R. E.
Borcherds
, “Generalized Kac-Moody algebras
,” J. Algebra
115
, 501
–512
(1988
).5.
R. E.
Borcherds
, “Monstrous moonshine and monstrous Lie superalgebras
,” Invent. Math.
109
, 405
–444
(1992
).6.
T.
Bozec
, “Quivers with loops and perverse sheaves
,” Math. Ann.
362
, 773
–797
(2015
).7.
T.
Bozec
, “Quivers with loops and generalized crystals
,” Compos. Math.
152
, 1999
–2040
(2016
).8.
T.
Bozec
, O.
Schiffmann
, and E.
Vasserot
, “On the number of points of nilpotent quiver varieties over finite fields
,” Ann. Sci. Ec. Norm. Super.
53
, 1501
–1544
(2020
).9.
V. G.
Kac
, “Lie superalgebras
,” Adv. Math.
26
, 8
–96
(1977
).10.
V. G.
Kac
, “Infinite-dimensional algebras, Dedekind's η-function, classical möbius function and the very strange formula
,” Adv. Math.
30
, 85
–136
(1978
).11.
U.
Ray
, “A character formula for generalized Kac-Moody superalgebras
,” J. Algebra
177
, 154
–163
(1995
).12.
S.-J.
Kang
, “Borcherds–Bozec algebras, root multiplicities and the Schofield construction
,” Commun. Contemp. Math.
21
, 1850031
(2019
).13.
Z.
Fan
, S.-J.
Kang
, Y. R.
Kim
, and B.
Tong
, “Classical limit of quantum Borcherds-Bozec algebras
,” J. Pure Appl. Algebra
225
, 106502
(2021
).14.
V. G.
Kac
, Infinite-dimensional Lie Algebras
(Cambridge University Press
, 1990
).© 2025 Author(s). Published under an exclusive license by AIP Publishing.
2025
Author(s)
You do not currently have access to this content.