The inclusion of spatial smoothing in finite-dimensional particle-based Hamiltonian reductions of the Vlasov equation and related models is considered. This work investigates the underlying Hamiltonian structure of such smoothed particle-based methods for Hamiltonian systems and the small-scale regularization such methods implicitly make in approximating the continuum theory. In the context of the Vlasov–Poisson equation and other mean-field Lie–Poisson systems, of which Vlasov–Poisson is a special case, smoothing amounts to a convolutive regularization of the Hamiltonian. This regularization may be interpreted as a change of the inner product structure used to identify the dual space in the Lie–Poisson Hamiltonian formulation. In particular, the shape function used for spatial smoothing may be identified as the kernel function of a reproducing kernel Hilbert space whose inner product is used to define the Lie–Poisson Hamiltonian structure. It is likewise possible to introduce smoothing in the Vlasov–Maxwell system, but in this case the Poisson bracket must be modified rather than the Hamiltonian. The smoothing applied to the Vlasov–Maxwell system is incorporated by inserting smoothing in the map from canonical to kinematic coordinates. In the filtered system, the Lorentz force law and the current, the two terms coupling the Vlasov equation with Maxwell’s equations, are spatially smoothed.

1.
Ameres
,
J.
, “
Stochastic and spectral particle methods for plasma physics
,” Ph.D. thesis,
Technical University of Munich
,
2023
.
2.
Arnold
,
D. N.
,
Falk
,
R. S.
, and
Winther
,
R.
, “
Finite element exterior calculus, homological techniques, and applications
,”
Acta Numer.
15
,
1
155
(
2006
).
3.
Arnold
,
D. N.
,
Falk
,
R. S.
, and
Winther
,
R.
, “
Finite element exterior calculus: from Hodge theory to numerical stability
,”
Bull. Am. Math. Soc.
47
,
281
(
2010
).
4.
Aronszajn
,
N.
, “
Theory of reproducing kernels
,”
Trans. Am. Math. Soc.
68
(
3
),
337
404
(
1950
).
5.
Birdsall
,
C. K.
and
Langdon
,
A. B.
,
Plasma Physics via Computer Simulation
(
CRC Press
,
Boca Raton, FL
,
1991
).
6.
Bochner
,
S.
,
Vorlesungen uber Fouriersche Integrale
(
Akademische Verlagsgesellschaft
,
1932
).
7.
Buffa
,
A.
,
Sangalli
,
G.
, and
Vázquez
,
R.
, “
Isogeometric analysis in electromagnetics: B-splines approximation
,”
Comput. Methods Appl. Mech. Eng.
199
(
17–20
),
1143
1152
(
2010
).
8.
Campos Pinto
,
M.
,
Kormann
,
K.
, and
Sonnendrücker
,
E.
, “
Variational framework for structure-preserving electromagnetic particle-in-cell methods
,”
J. Sci. Comput.
91
,
46
(
2022
).
9.
Chandre
,
C.
,
Morrison
,
P. J.
, and
Tassi
,
E.
, “
Hamiltonian formulation of the modified Hasegawa–Mima equation
,”
Phys. Lett. A
378
(
13
),
956
959
(
2014
).
10.
Christiansen
,
I. P.
, “
Numerical simulation of hydrodynamics by the method of point vortices
,”
J. Comput. Phys.
13
(
3
),
363
379
(
1973
).
11.
Cottet
,
G.-H.
, “
Convergence of a vortex in cell method for the two-dimensional Euler equations
,”
Math. Comput.
49
,
407
425
(
1987
).
12.
Evstatiev
,
E. G.
and
Shadwick
,
B. A.
, “
Variational formulation of particle algorithms for kinetic plasma simulations
,”
J. Comput. Phys.
245
,
376
398
(
2013
).
13.
Evstatiev
,
E. G.
et al, “
Noise and error analysis and optimization in particle-based kinetic plasma simulations
,”
J. Comput. Phys.
440
,
110394
(
2021
).
14.
Hockney
,
R. W.
and
Eastwood
,
J. W.
,
Computer Simulation Using Particles
(
CRC Press
,
Boca Raton, FL
,
1988
).
15.
Kazashi
,
Y.
and
Nobile
,
F.
, “
Density estimation in RKHS with application to Korobov spaces in high dimensions
,”
SIAM J. Numer. Anal.
61
(
2
),
1080
1102
(
2023
).
16.
Kim
,
J. S.
and
Scott
,
C. D.
, “
Robust kernel density estimation
,”
J. Mach. Learn. Res.
13
(
82
),
2529
2565
(
2012
).
17.
Kraichnan
,
R. H.
and
Montgomery
,
D.
, “
Two-dimensional turbulence
,”
Rep. Prog. Phys.
43
(
5
),
547
(
1980
).
18.
Kraus
,
M.
et al, “
GEMPIC: Geometric electromagnetic particle-in-cell methods
,”
J. Plasma Phys.
83
(
4
),
905830401
(
2017
).
19.
Krause
,
T. B.
,
Apte
,
A.
, and
Morrison
,
P. J.
, “
A unified approach to the Darwin approximation
,”
Phys. Plasmas
14
(
10
),
102112
(
2007
).
20.
Liu
,
W. K.
,
Jun
,
S.
, and
Zhang
,
Y. F.
, “
Reproducing kernel particle methods
,”
Int. J. Numer. Methods Fluids
20
(
8–9
),
1081
1106
(
1995
).
21.
Marsden
,
J.
,
Morrison
,
P. J.
, and
Weinstein
,
A.
, “
The Hamiltonian structure of the BBGKY hierarchy equations
,” in
Fluids and Plasmas: Geometry and Dynamics
, Contemporary Mathematics Vol. 28, edited by
J. E.
Marsden
(published online
1984
).
22.
Marsden
,
J. E.
and
Weinstein
,
A.
, “
The Hamiltonian structure of the Maxwell-Vlasov equations
,”
Physica D
4
(
3
),
394
406
(
1982
).
23.
Miloshevich
,
G.
and
Burby
,
J. W.
, “
Hamiltonian reduction of Vlasov–Maxwell to a dark slow manifold
,”
J. Plasma Phys.
87
(
3
),
835870301
(
2021
).
24.
Morrison
,
P. J.
, “
The Maxwell-Vlasov equations as a continuous Hamiltonian system
,”
Phys. Lett. A
80
(
5–6
),
383
386
(
1980
).
25.
Morrison
,
P. J.
, “
Hamiltonian field description of two-dimensional vortex fluids and guiding center plasmas
,”
Technical Report No. PPPL-1783
,
Princeton Plasma Physics Laboratory
,
1981
.
26.
Morrison
,
P. J.
, “
Poisson brackets for fluids and plasmas
,”
AIP Conf. Proc.
88
(
1
),
13
46
(
1982
).
27.
Morrison
,
P. J.
, “
Hamiltonian description of Vlasov dynamics: Action-angle variables for the continuous spectrum
,”
Transp. Theory Stat. Phys.
29
(
3–5
),
397
414
(
2000
).
28.
Morrison
,
P. J.
, “
Hamiltonian description of fluid and plasma systems with continuous spectra
,” in
Nonlinear Processes in Geophysical Fluid Dynamics: A Tribute to the Scientific Work of Pedro Ripa
, edited by
Velasco Fuentes
,
O. U.
,
Sheinbaum
,
J.
, and
Ochoa
,
J.
(
Springer
,
Dordrecht, The Netherlands
,
2003
), pp.
53
69
.
29.
Morrison
,
P. J.
, “
Structure and structure-preserving algorithms for plasma physics
,”
Phys. Plasmas
24
(
5
),
055502
(
2017
).
30.
Squire
,
J.
,
Qin
,
H.
, and
Tang
,
W. M.
, “
Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme
,”
Phys. Plasmas
19
(
8
),
084501
(
2012
).
31.
Tassi
,
E.
,
Chandre
,
C.
, and
Morrison
,
P. J.
, “
Hamiltonian derivation of the Charney–Hasegawa–Mima equation
,”
Phys. Plasmas
16
(
8
),
082301
(
2009
).
32.
Wilhelm
,
R. P.
and
Kirchhart
,
M.
, “
An interpolating particle method for the Vlasov–Poisson equation
,”
J. Comput. Phys.
473
,
111720
(
2023
).
33.
Wu
,
W.
and
Qin
,
H.
, “
Reducing noise for PIC simulations using kernel density estimation algorithm
,”
Phys. Plasmas
25
(
10
),
102107
(
2018
).
You do not currently have access to this content.