Let XN be a N × N real Wishart random matrix with aspect ratio M/N. The limit eigenvalue distribution of XN is the Marchenko-Pastur law with parameter c = limNM/N. The limit moments are given by mn = ∑πc#(π) where the sum runs over NC(n). Let be the limit of . These are the asymptotic infinitesimal moments of a real Wishart matrix. We show that can be written as a sum over planar diagrams with two terms, ∑πc′(#(π) − 1)c#(π)−1, and , where is a set of non-crossing annular permutations satisfying a symmetry condition. Moreover we present a recursion formula for the second term which is related to one for higher order freeness.
REFERENCES
1.
Arizmendi
, O.
, Garza-Vargas
, J.
, and Perales
, D.
, “Finite free cumulants: Multiplicative convolutions, genus expansion and infinitesimal distributions
,” Trans. Am. Math. Soc.
376
, 4383
–4420
(2023
).2.
Belinschi
, S. T.
and Shlyakhtenko
, D.
, “Free probability of type B: Analytic interpretation and applications
,” Am. J. Math.
134
, 193
–234
(2012
).3.
Biane
, P.
, Goodman
, F.
, and Nica
, A.
, “Non-crossing cumulants of type B
,” Trans. Am. Math. Soc.
355
, 2263
–2303
(2003
).4.
Borot
, G.
, Charbonnier
, S.
, Garcia-Failde
, E.
, Leid
, F.
, and Shadrin
, S.
, “Functional relations for higher order free cumulants
,” arXiv:2112.12184.5.
Collins
, B.
, Mingo
, J. A.
, Śniady
, P.
, and Speicher
, R.
, “Second order freeness and fluctuations of random matrices. III: Higher order freeness and free cumulants
,” Doc. Math.
12
, 1
–70
(2007
).6.
Dumitriu
, I.
and Edelman
, A.
, “Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models
,” J. Math. Phys.
47
, 063302
(2006
).7.
Féray
, V.
, “On complete functions in Jucys-Murphy elements
,” Ann. Comb.
16
, 677
–707
(2012
).8.
Février
, M.
and Nica
, A.
, “Infinitesimal non-crossing cumulants and free probability of type B
,” J. Funct. Anal.
258
, 2983
–3023
(2010
).9.
Graczyk
, P.
, Letac
, G.
, and Massam
, H.
, “The Hyperoctahedral group, symmetric group representations and the moments of the real Wishart distribution
,” J. Theor. Probab.
18
, 1
–42
(2005
).10.
Graham
, R.
, Knuth
, D.
, and Patashnik
, O.
, Concrete Mathematics
, 2nd ed. (Addison-Wesley
, Reading, MA
, 1994
).11.
Hooft
, G.
, “A planar diagram theory for strong interactions
,” Nucl. Phys. B
72
, 461
–473
(1974
).12.
Johansson
, K.
, “On fluctuations of eigenvalues of random Hermitian matrices
,” Duke Math. J.
91
, 151
–203
(1998
).13.
Kusalik
, T.
, Mingo
, J. A.
, and Speicher
, R.
, “Orthogonal polynomials and fluctuations of random matrices
,” J. Reine Angew. Math.
2007
, 1
–46
.14.
Merlini
, D.
, Sprugnoli
, R.
, and Verri
, M. C.
, “The area determined by underdiagonal lattice paths
,” in Trees in Algebra and Programming—CAAP’96
, edited by Kirchner
, H.
(Springer-Verlag
, London
, 1996
), pp. 59
–71
.15.
Mingo
, J. A.
, “Non-crossing annular pairings and the infinitesimal distribution of the goe
,” J. London Math. Soc.
100
, 987
–1012
(2019
).16.
Mingo
, J. A.
and Nica
, A.
, “Annular non-crossing permutations and partitions, and second order asymptotics for random matrices
,” Int. Math. Res. Not.
2004
(28
), 1413
–1460
.17.
Mingo
, J. A.
and Popa
, M.
, “Real second order freeness and Haar orthogonal matrices
,” J. Math. Phys.
54
, 051701
(2013
).18.
Mingo
, J. A.
and Speicher
, R.
, Free Probability and Random Matrices
(Springer
, New York
, 2017
).19.
Nica
, A.
and Oancea
, I.
, “Posets of annular non-crossing partitions of types B and D
,” Discrete Math.
309
, 1443
–1466
(2009
).20.
Nica
, A.
and Speicher
, R.
, Lectures on the Combinatorics of Free Probability
(Cambridge University Press
, Cambridge
, 2006
).21.
Redelmeier
, C. E. I.
, “Genus expansion for real Wishart matrices
,” J. Theor. Probab.
24
, 1044
–1062
(2011
).22.
Redelmeier
, C. E. I.
, “Real second-order freeness and the asymptotic real second-order freeness of several real matrix models
,” Int. Math. Res. Not.
2014
(12
), 3353
–3395
.23.
Sloane
, N. J. A.
and OEIS Foundation
, The on-line encyclopedia of integer sequences, http://oeis.org/.24.
Shlyakhtenko
, D.
, “Free probability of type B and asymptotics of finite-rank perturbations of random matrices
,” Indiana Univ. Math. J.
67
, 971
–991
(2018
).25.
Speicher
, R.
, “Multiplicative functions on the lattice of non-crossing partitions and free convolution
,” Math. Ann.
298
, 611
–628
(1994
).26.
Szegö
, G.
, Orthogonal Polynomials
, 4th ed. (American Mathematical Society
, Providence, RI
, 1975
).27.
Voiculescu
, D.
, “Limit laws for random matrices and free products
,” Invent. Math
104
, 201
–220
(1991
).© 2025 Author(s). Published under an exclusive license by AIP Publishing.
2025
Author(s)
You do not currently have access to this content.