Let XN be a N × N real Wishart random matrix with aspect ratio M/N. The limit eigenvalue distribution of XN is the Marchenko-Pastur law with parameter c = limNM/N. The limit moments {mn}n are given by mn = ∑πc#(π) where the sum runs over NC(n). Let mn be the limit of N(E(tr(XNn))mn). These are the asymptotic infinitesimal moments of a real Wishart matrix. We show that mn can be written as a sum over planar diagrams with two terms, ∑πc′(#(π) − 1)c#(π)−1, and πSNCδ(n,n)c#(π)/2, where SNCδ(n,n) is a set of non-crossing annular permutations satisfying a symmetry condition. Moreover we present a recursion formula for the second term which is related to one for higher order freeness.

1.
Arizmendi
,
O.
,
Garza-Vargas
,
J.
, and
Perales
,
D.
, “
Finite free cumulants: Multiplicative convolutions, genus expansion and infinitesimal distributions
,”
Trans. Am. Math. Soc.
376
,
4383
4420
(
2023
).
2.
Belinschi
,
S. T.
and
Shlyakhtenko
,
D.
, “
Free probability of type B: Analytic interpretation and applications
,”
Am. J. Math.
134
,
193
234
(
2012
).
3.
Biane
,
P.
,
Goodman
,
F.
, and
Nica
,
A.
, “
Non-crossing cumulants of type B
,”
Trans. Am. Math. Soc.
355
,
2263
2303
(
2003
).
4.
Borot
,
G.
,
Charbonnier
,
S.
,
Garcia-Failde
,
E.
,
Leid
,
F.
, and
Shadrin
,
S.
, “
Functional relations for higher order free cumulants
,” arXiv:2112.12184.
5.
Collins
,
B.
,
Mingo
,
J. A.
,
Śniady
,
P.
, and
Speicher
,
R.
, “
Second order freeness and fluctuations of random matrices. III: Higher order freeness and free cumulants
,”
Doc. Math.
12
,
1
70
(
2007
).
6.
Dumitriu
,
I.
and
Edelman
,
A.
, “
Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models
,”
J. Math. Phys.
47
,
063302
(
2006
).
7.
Féray
,
V.
, “
On complete functions in Jucys-Murphy elements
,”
Ann. Comb.
16
,
677
707
(
2012
).
8.
Février
,
M.
and
Nica
,
A.
, “
Infinitesimal non-crossing cumulants and free probability of type B
,”
J. Funct. Anal.
258
,
2983
3023
(
2010
).
9.
Graczyk
,
P.
,
Letac
,
G.
, and
Massam
,
H.
, “
The Hyperoctahedral group, symmetric group representations and the moments of the real Wishart distribution
,”
J. Theor. Probab.
18
,
1
42
(
2005
).
10.
Graham
,
R.
,
Knuth
,
D.
, and
Patashnik
,
O.
,
Concrete Mathematics
, 2nd ed. (
Addison-Wesley
,
Reading, MA
,
1994
).
11.
Hooft
,
G.
, “
A planar diagram theory for strong interactions
,”
Nucl. Phys. B
72
,
461
473
(
1974
).
12.
Johansson
,
K.
, “
On fluctuations of eigenvalues of random Hermitian matrices
,”
Duke Math. J.
91
,
151
203
(
1998
).
13.
Kusalik
,
T.
,
Mingo
,
J. A.
, and
Speicher
,
R.
, “
Orthogonal polynomials and fluctuations of random matrices
,”
J. Reine Angew. Math.
2007
,
1
46
.
14.
Merlini
,
D.
,
Sprugnoli
,
R.
, and
Verri
,
M. C.
, “
The area determined by underdiagonal lattice paths
,” in
Trees in Algebra and Programming—CAAP’96
, edited by
Kirchner
,
H.
(
Springer-Verlag
,
London
,
1996
), pp.
59
71
.
15.
Mingo
,
J. A.
, “
Non-crossing annular pairings and the infinitesimal distribution of the goe
,”
J. London Math. Soc.
100
,
987
1012
(
2019
).
16.
Mingo
,
J. A.
and
Nica
,
A.
, “
Annular non-crossing permutations and partitions, and second order asymptotics for random matrices
,”
Int. Math. Res. Not.
2004
(
28
),
1413
1460
.
17.
Mingo
,
J. A.
and
Popa
,
M.
, “
Real second order freeness and Haar orthogonal matrices
,”
J. Math. Phys.
54
,
051701
(
2013
).
18.
Mingo
,
J. A.
and
Speicher
,
R.
,
Free Probability and Random Matrices
(
Springer
,
New York
,
2017
).
19.
Nica
,
A.
and
Oancea
,
I.
, “
Posets of annular non-crossing partitions of types B and D
,”
Discrete Math.
309
,
1443
1466
(
2009
).
20.
Nica
,
A.
and
Speicher
,
R.
,
Lectures on the Combinatorics of Free Probability
(
Cambridge University Press
,
Cambridge
,
2006
).
21.
Redelmeier
,
C. E. I.
, “
Genus expansion for real Wishart matrices
,”
J. Theor. Probab.
24
,
1044
1062
(
2011
).
22.
Redelmeier
,
C. E. I.
, “
Real second-order freeness and the asymptotic real second-order freeness of several real matrix models
,”
Int. Math. Res. Not.
2014
(
12
),
3353
3395
.
23.
Sloane
,
N. J. A.
and
OEIS Foundation
, The on-line encyclopedia of integer sequences, http://oeis.org/.
24.
Shlyakhtenko
,
D.
, “
Free probability of type B and asymptotics of finite-rank perturbations of random matrices
,”
Indiana Univ. Math. J.
67
,
971
991
(
2018
).
25.
Speicher
,
R.
, “
Multiplicative functions on the lattice of non-crossing partitions and free convolution
,”
Math. Ann.
298
,
611
628
(
1994
).
26.
Szegö
,
G.
,
Orthogonal Polynomials
, 4th ed. (
American Mathematical Society
,
Providence, RI
,
1975
).
27.
Voiculescu
,
D.
, “
Limit laws for random matrices and free products
,”
Invent. Math
104
,
201
220
(
1991
).
You do not currently have access to this content.