We solve the time-dependent Schrödinger equation describing a generalized harmonic oscillator in the coordinate representation with constant mass but time-dependent stiffness and correlation parameters. Exact solutions are obtained in terms of confluent hypergeometric functions or parabolic cylinder functions. The dynamics of mean energy is studied in several different regimes, including the special case of imaginary correlation parameter, corresponding to the non-Hermitian Ahmed–Swanson model. In this case, real time-dependent mean values of the Hamiltonian are obtained by using dual wave functions, evolving according to the time-dependent Schrödinger equations with the given Hamiltonian and its Hermitially conjugated partner. The adiabatic evolution is considered as one of examples.

1.
P. G. L.
Leach
, “
Invariants and wavefunctions for some time-dependent harmonic oscillator-type Hamiltonians
,”
J. Math. Phys.
18
(
10
),
1902
1907
(
1977
).
2.
V. V.
Dodonov
,
E. V.
Kurmyshev
, and
V. I.
Man’ko
, “
Generalized uncertainty relation and correlated coherent states
,”
Phys. Lett. A
79
(
2–3
),
150
152
(
1980
).
3.
K. H.
Yeon
,
K. K.
Lee
,
C. I.
Um
,
T. F.
George
, and
L. N.
Pandey
, “
Exact quantum theory of a time-dependent bound quadratic Hamiltonian system
,”
Phys. Rev. A
48
(
4
),
2716
2720
(
1993
).
4.
M. S.
Abdalla
, “
Quantum statistics of the degenerate parametric oscillator
,”
Physica A
210
(
3–4
),
461
475
(
1994
).
5.
V. V.
Dodonov
, “
Parametric excitation and generation of nonclassical states in linear media
,” in
Theory of Nonclassical States of Light
, edited by
V. V.
Dodonov
and
V. I.
Man’ko
(
Taylor & Francis
,
London
,
2003
), pp.
153
218
.
6.
R.
Cordero-Soto
,
E.
Suazo
, and
S. K.
Suslov
, “
Quantum integrals of motion for variable quadratic Hamiltonians
,”
Ann. Phys.
325
(
9
),
1884
1912
(
2010
).
7.
K.
Husimi
, “
Miscellanea in elementary quantum mechanics, II
,”
Prog. Theor. Phys.
9
(
4
),
381
402
(
1953
).
8.
V. S.
Popov
and
A. M.
Perelomov
, “
Parametric excitation of a quantum oscillator
,”
Sov. Phys.–JETP
29
(
4
),
738
745
(
1969
).
9.
H. R.
Lewis
, Jr.
and
W. B.
Riesenfeld
, “
An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field
,”
J. Math. Phys.
10
(
8
),
1458
1473
(
1969
).
10.
I. A.
Malkin
,
V. I.
Man’ko
, and
D. A.
Trifonov
, “
Coherent states and transition probabilities in a time-dependent electromagnetic field
,”
Phys. Rev. D
2
,
1371
1385
(
1970
).
11.
I. A.
Malkin
,
V. I.
Man’ko
, and
D. A.
Trifonov
, “
Linear adiabatic invariants and coherent states
,”
J. Math. Phys.
14
(
5
),
576
582
(
1973
).
12.
V. V.
Dodonov
and
V. I.
Man’ko
, “
Invariants and correlated states of nonstationary quantum systems
,” in
Invariants and the Evolution of Nonstationary Quantum Systems
,
Proceedings of the P. N. Lebedev Physical Institute
, edited by
M. A.
Markov
(
Nova Science
,
New York
,
1989
), Vol.
183
, pp.
103
261
.
13.
M. V.
Berry
, “
Classical adiabatic angles and quantal adiabatic phase
,”
J. Phys. A: Math. Gen.
18
(
1
),
15
27
(
1985
).
14.
J. H.
Hannay
, “
Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian
,”
J. Phys. A: Math. Gen.
18
(
2
),
221
230
(
1985
).
15.
M. H.
Engineer
and
G.
Ghosh
, “
Berry’s phase as the asymptotic limit of an exact evolution: An example
,”
J. Phys. A: Math. Gen.
21
(
2
),
L95
L98
(
1988
).
16.
D. A.
Morales
, “
Correspondence between Berry's phase and Lewis’s phase for quadratic Hamiltonians
,”
J. Phys. A: Math. Gen.
21
(
18
),
L889
L892
(
1988
).
17.
V. V.
Dodonov
and
V. I.
Man’ko
, “
Adiabatic invariants, correlated states and Berry’s phase
,” in
Topological Phases in Quantum Theory
, edited by
B.
Markovski
and
S. I.
Vinitsky
(
World Scientific
,
Singapore
,
1989
), pp.
74
83
.
18.
J. M.
Cerveró
and
J. D.
Lejarreta
, “
SO(2,1)-invariant systems and the Berry phase
,”
J. Phys. A: Math. Gen.
22
(
14
),
L663
L666
(
1989
).
19.
P. G. L.
Leach
, “
Berry’s phase and wavefunctions for time-dependent Hamilton systems
,”
J. Phys. A: Math. Gen.
23
(
12
),
2695
2699
(
1990
).
20.
Z.
Ahmed
, “
Pseudo-hermiticity of Hamiltonians under gauge-like transformation: Real spectrum of non-Hermitian Hamiltonians
,”
Phys. Lett. A
294
,
287
291
(
2002
).
21.
M. S.
Swanson
, “
Transition elements for a non-Hermitian quadratic Hamiltonian
,”
J. Math. Phys.
45
(
2
),
585
601
(
2004
).
22.
J.
Gong
and
Q.-H.
Wang
, “
Time-dependent PT-symmetric quantum mechanics
,”
J. Phys. A: Math. Theor.
46
(
48
),
485302
(
2013
).
23.
E. M.
Graefe
,
H. J.
Korsch
,
A.
Rush
, and
R.
Schubert
, “
Classical and quantum dynamics in the (non-Hermitian) Swanson oscillator
,”
J. Phys. A: Math. Theor.
48
(
5
),
055301
(
2015
).
24.
N.
Bebiano
and
J.
da Providência
, “
Non-self-adjoint operators with real spectra and extensions of quantum mechanics
,”
J. Math. Phys.
60
(
1
),
012104
(
2019
).
25.
V.
Fernández
,
R.
Ramírez
, and
M.
Reboiro
, “
Swanson Hamiltonian: Non-PT-symmetry phase
,”
J. Phys. A: Math. Theor.
55
(
1
),
015303
(
2022
).
26.
A.
Fring
and
T.
Taira
, “
Non-Hermitian quantum Fermi accelerator
,”
Phys. Rev. A
108
(
1
),
012222
(
2023
).
27.
F.
Bagarello
, “
A Swanson-like Hamiltonian and the inverted harmonic oscillator
,”
J. Phys. A: Math. Theor.
55
(
22
),
225204
(
2022
).
28.
H. P.
Yuen
, “
Contractive states and the standard quantum limit for monitoring free-mass positions
,”
Phys. Rev. Lett.
51
(
9
),
719
722
(
1983
).
29.
R. A.
Campos
, “
Quantum correlation coefficient for position and momentum
,”
J. Mod. Opt.
46
(
8
),
1277
1294
(
1999
).
30.
A. D.
Sukhanov
, “
Schrödinger uncertainty relations and physical features of correlated-coherent states
,”
Theor. Math. Phys.
132
(
3
),
1277
1294
(
2002
).
31.
R. W.
Robinett
,
M. A.
Doncheski
, and
L. C.
Bassett
, “
Simple examples of position-momentum correlated Gaussian free-particle wave packets in one dimension with the general form of the time-dependent spread in position
,”
Found. Phys. Lett.
18
(
5
),
455
475
(
2005
).
32.
V. I.
Vysotskii
and
M. V.
Vysotskyy
, “
Coherent correlated states and low-energy nuclear reactions in non stationary systems
,”
Eur. Phys. J. A
49
(
8
),
99
(
2013
).
33.
V. N.
Chernega
and
O. V.
Man’ko
, “
Squeezed and correlated states of parametric oscillator and free particle in the probability representation of quantum mechanics
,”
J. Russ. Laser Res.
43
(
3
),
280
289
(
2022
).
34.
P. A. M.
Dirac
, “
The physical interpretation of the quantum dynamics
,”
Proc. R. Soc. London A
113
(
765
),
621
641
(
1927
).
35.
E. H.
Kennard
, “
Zur quantenmechanik einfacher bewegungstypen
,”
Z. Phys.
44
(
4–5
),
326
352
(
1927
).
36.
J.
Schwinger
, “
On gauge invariance and vacuum polarization
,”
Phys. Rev.
82
(
5
),
664
679
(
1951
).
37.
V. V.
Dodonov
,
I. A.
Malkin
, and
V. I.
Man’ko
, “
The Green function and thermodynamical properties of quadratic systems
,”
J. Phys. A: Math. Gen.
8
(
2
),
L19
L22
(
1975
).
38.
V. V.
Dodonov
,
I. A.
Malkin
, and
V. I.
Man’ko
, “
Integrals of the motion, Green functions, and coherent states of dynamical systems
,”
Int. J. Theor. Phys.
14
(
1
),
37
54
(
1975
).
39.
L. F.
Landovitz
, “
Transition probabilities in a strong external field
,”
Phys. Rev. A
11
(
1
),
67
70
(
1975
).
40.
W. B.
Campbell
,
P.
Finkler
,
C. E.
Jones
, and
M. N.
Misheloff
, “
Path integrals with arbitrary generators and the eigenfunction problem
,”
Ann. Phys.
96
(
2
),
286
302
(
1976
).
41.
V. V.
Dodonov
,
I. A.
Malkin
, and
V. I.
Man’ko
, “
Invariants and nonequilibrium density matrices
,”
J. Stat. Phys.
16
(
4
),
357
370
(
1977
).
42.
V. V.
Dodonov
and
V. I.
Man’ko
, “
Integrals of motion of pure and mixed quantum systems
,”
Physica A
94
(
3–4
),
403
412
(
1978
).
43.
I. S.
Gradshtein
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
(
Academic
,
Amsterdam
,
2007
).
44.
Bateman Manuscript Project: Higher Transcendental Functions
, edited by
A.
Erdélyi
(
McGraw-Hill
,
New York
,
1953
), Vol.
I
.
45.
P.
Caldirola
, “
Forze non concervative nella meccanica quantistica
,”
Nuovo Cimento
18
(
9
),
393
400
(
1941
).
46.
E.
Kanai
, “
On the quantization of the dissipative systems
,”
Prog. Theor. Phys.
3
(
4
),
440
442
(
1948
).
47.
V. V.
Dodonov
and
V. I.
Man’ko
, “
Coherent states and the resonance of a quantum damped oscillator
,”
Phys. Rev. A
20
(
2
),
550
560
(
1979
).
48.
A.
Mostafazadeh
, “
Time-dependent diffeomorphisms as quantum canonical transformations and the time-dependent harmonic oscillator
,”
J. Phys. A: Math. Gen.
31
(
30
),
6495
6503
(
1998
).
49.
C.-I.
Um
,
K.-H.
Yeon
, and
T. F.
George
, “
The quantum damped harmonic oscillator
,”
Phys. Rep.
362
(
2–3
),
63
192
(
2002
).
50.
J.
Guerrero
and
F. F.
López-Ruiz
, “
On the Lewis–Riesenfeld (Dodonov–Man’ko) invariant method
,”
Phys. Scr.
90
(
7
),
074046
(
2015
).
51.
K.
Zelaya
and
O.
Rosas-Ortiz
, “
Exact solutions for time-dependent non-Hermitian oscillators: Classical and quantum pictures
,”
Quantum Rep.
3
(
3
),
458
472
(
2021
).
52.
T.
Curtright
and
L.
Mezincescu
, “
Biorthogonal quantum systems
,”
J. Math. Phys.
48
(
9
),
092106
(
2007
).
You do not currently have access to this content.