We study the three-dimensional compressible elastic Navier-Stokes-Poisson equations, which model the motion of a kind of compressible electrically conducting viscoelastic flows. In the Poisson equation, the positive background charge satisfies the constant distribution or the Boltzmann distribution. Under the Hodge boundary condition for the velocity and the Dirichlet or Neumann boundary condition for the electrostatic potential, we obtain the uniquely global strong solution near a constant equilibrium state for the half-space problem by a delicate energy method.

1.
W.
Wu
and
Y.
Wang
, “
On the half-space or exterior problems of the 3D compressible elastic Navier-Stokes-Poisson equations
,”
SIAM J. Math. Anal.
55
(
4
),
2996
3043
(
2023
).
2.
A.
Jüngel
,
Quasi-Hydrodynamic Semiconductor Equations
,
Progress in Nonlinear Differential Equations and Their Applications Vol. 41
(
Birkhäuser Verlag
,
Basel; Boston
,
2001
).
3.
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
, edited by
Y.
Giga
and
A.
Novotný
(
Springer
,
Cham
,
2018
).
4.
F.
Lin
,
C.
Liu
, and
P.
Zhang
, “
On hydrodynamics of viscoelastic fluids
,”
Commun. Pure Appl. Math.
58
(
11
),
1437
1471
(
2005
).
5.
J.
Qian
and
Z.
Zhang
, “
Global well-posedness for compressible viscoelastic fluids near equilibrium
,”
Arch. Ration. Mech. Anal.
198
(
3
),
835
868
(
2010
).
6.
J. Y.
Chemin
and
N.
Masmoudi
, “
About lifespan of regular solutions of equations related to viscoelastic fluids
,”
SIAM J. Math. Anal.
33
(
1
),
84
112
(
2001
).
7.
T. M.
Elgindi
and
N.
Masmoudi
, “
L ill-posedness for a class of equations arising in hydrodynamics
,”
Arch. Ration. Mech. Anal.
235
(
3
),
1979
2025
(
2020
).
8.
T. M.
Elgindi
and
F.
Rousset
, “
Global regularity for some Oldroyd-B type models
,”
Commun. Pure Appl. Math.
68
(
11
),
2005
2021
(
2015
).
9.
E.
Di Iorio
,
P.
Marcati
, and
S.
Spirito
, “
Splash singularities for a general Oldroyd model with finite Weissenberg number
,”
Arch. Ration. Mech. Anal.
235
(
3
),
1589
1660
(
2020
).
10.
J.
La
, “
On diffusive 2D Fokker-Planck-Navier-Stokes systems
,”
Arch. Ration. Mech. Anal.
235
(
3
),
1531
1588
(
2020
).
11.
J. G.
Oldroyd
, “
On the formulation of rheological equations of state
,”
Proc. R. Soc. London, Ser. A
200
,
523
541
(
1950
).
12.
X.
Hu
and
D.
Wang
, “
Local strong solution to the compressible viscoelastic flow with large data
,”
J. Differ. Equations
249
(
5
),
1179
1198
(
2010
).
13.
X.
Hu
and
G.
Wu
, “
Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows
,”
SIAM J. Math. Anal.
45
(
5
),
2815
2833
(
2013
).
14.
D.
Hoff
and
K.
Zumbrun
, “
Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow
,”
Indiana Univ. Math. J.
44
(
2
),
603
676
(
1995
).
15.
G.
Ponce
, “
Global existence of small solutions to a class of nonlinear evolution equations
,”
Nonlinear Anal.
9
(
5
),
399
418
(
1985
).
16.
Y.
Guo
and
Y.
Wang
, “
Decay of dissipative equations and negative Sobolev spaces
,”
Commun. Partial Differ. Equations
37
(
12
),
2165
2208
(
2012
).
17.
G.
Wu
,
Z.
Gao
, and
Z.
Tan
, “
Time decay rates for the compressible viscoelastic flows
,”
J. Math. Anal. Appl.
452
(
2
),
990
1004
(
2017
).
18.
J.
Gao
,
M.
Li
, and
Z.
Yao
, “
Optimal decay of compressible Navier-Stokes equations with or without potential force
,”
J. Differ. Equations
342
,
63
120
(
2023
).
19.
X.
Hu
and
W.
Zhao
, “
Global existence for the compressible viscoelastic system with zero shear viscosity in three dimensions
,”
J. Differ. Equations
268
(
4
),
1658
1685
(
2020
).
20.
X.
Hu
and
W.
Zhao
, “
Global existence of compressible dissipative elastodynamics systems with zero shear viscosity in two dimensions
,”
Arch. Ration. Mech. Anal.
235
(
2
),
1177
1243
(
2020
).
21.
J.
Qian
, “
Initial boundary value problems for the compressible viscoelastic fluid
,”
J. Differ. Equations
250
(
2
),
848
865
(
2011
).
22.
Q.
Chen
and
G.
Wu
, “
The 3D compressible viscoelastic fluid in a bounded domain
,”
Commun. Math. Sci.
16
(
5
),
1303
1323
(
2018
).
23.
X.
Gu
,
D.
Wang
, and
F.
Xie
, “
Vanishing viscosity limit of compressible viscoelastic equations in half space
,”
J. Differ. Equations
398
,
319
343
(
2024
).
24.
B.
Han
and
R.
Zi
, “
Dispersive effect and global well-posedness of the compressible viscoelastic fluids
,”
J. Differ. Equations
269
(
11
),
9254
9296
(
2020
).
25.
X.
Hu
and
D.
Wang
, “
Strong solutions to the three-dimensional compressible viscoelastic fluids
,”
J. Differ. Equations
252
(
6
),
4027
4067
(
2012
).
26.
X.
Hu
and
D.
Wang
, “
The initial-boundary value problem for the compressible viscoelastic flows
,”
Discrete Contin. Dyn. Syst. A
35
(
3
),
917
934
(
2015
).
27.
F.
Jiang
and
S.
Jiang
, “
Strong solutions of the equations for viscoelastic fluids in some classes of large data
,”
J. Differ. Equations
282
,
148
183
(
2021
).
28.
F.
Jiang
,
S.
Jiang
, and
W.
Zhan
, “
Instability of the abstract Rayleigh-Taylor problem and applications
,”
Math. Models Methods Appl. Sci.
30
(
12
),
2299
2388
(
2020
).
29.
Y.
Li
,
R.
Wei
, and
Z.
Yao
, “
Optimal decay rates for the compressible viscoelastic flows
,”
J. Math. Phys.
57
(
11
),
111506
(
2016
).
30.
Y.
Cai
,
Z.
Lei
,
F.
Lin
, and
N.
Masmoudi
, “
Vanishing viscosity limit for incompressible viscoelasticity in two dimensions
,”
Commun. Pure Appl. Math.
72
(
10
),
2063
2120
(
2019
).
31.
Y.
Chen
and
P.
Zhang
, “
The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions
,”
Commun. Partial Differ. Equations
31
(
12
),
1793
1810
(
2006
).
32.
X.
Hu
and
F.
Lin
, “
Global solutions of two-dimensional incompressible viscoelastic flows with discontinuous initial data
,”
Commun. Pure Appl. Math.
69
(
2
),
372
404
(
2016
).
33.
F.
Jiang
,
S.
Jiang
, and
G.
Wu
, “
On stabilizing effect of elasticity in the Rayleigh-Taylor problem of stratified viscoelastic fluids
,”
J. Funct. Anal.
272
(
9
),
3763
3824
(
2017
).
34.
F.
Jiang
,
G.
Wu
, and
X.
Zhong
, “
On exponential stability of gravity driven viscoelastic flows
,”
J. Differ. Equations
260
(
10
),
7498
7534
(
2016
).
35.
Z.
Lei
, “
On 2D viscoelasticity with small strain
,”
Arch. Ration. Mech. Anal.
198
(
1
),
13
37
(
2010
).
36.
Z.
Lei
,
C.
Liu
, and
Y.
Zhou
, “
Global existence for a 2D incompressible viscoelastic model with small strain
,”
Commun. Math. Sci.
5
(
3
),
595
616
(
2007
).
37.
Z.
Lei
,
C.
Liu
, and
Y.
Zhou
, “
Global solutions for incompressible viscoelastic fluids
,”
Arch. Ration. Mech. Anal.
188
(
3
),
371
398
(
2008
).
38.
Z.
Lei
and
Y.
Zhou
, “
Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit
,”
SIAM J. Math. Anal.
37
(
3
),
797
814
(
2005
).
39.
F.
Lin
and
P.
Zhang
, “
On the initial-boundary value problem of the incompressible viscoelastic fluid system
,”
Commun. Pure Appl. Math.
61
(
4
),
539
558
(
2008
).
40.
T.
Zhang
and
D.
Fang
, “
Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical Lp framework
,”
SIAM J. Math. Anal.
44
(
4
),
2266
2288
(
2012
).
41.
X.
Hu
,
F.
Lin
, and
C.
Liu
, “
Equations for viscoelastic fluids
,” in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (
Springer
,
Cham
,
2018
), pp.
1045
1073
.
42.
Q.
Bie
,
Q.
Wang
, and
Z.
Yao
, “
Optimal decay rate for the compressible Navier-Stokes-Poisson system in the critical Lp framework
,”
J. Differ. Equations
263
(
12
),
8391
8417
(
2017
).
43.
H.
Li
,
A.
Matsumura
, and
G.
Zhang
, “
Optimal decay rate of the compressible Navier–Stokes–Poisson system in R 3
,”
Arch. Ration. Mech. Anal.
196
(
2
),
681
713
(
2010
).
44.
Z.
Tan
,
T.
Yang
,
H.
Zhao
, and
Q.
Zou
, “
Global solutions to the one-dimensional compressible Navier–Stokes–Poisson equations with large data
,”
SIAM J. Math. Anal.
45
(
2
),
547
571
(
2013
).
45.
W.
Wang
and
Z.
Wu
, “
Pointwise estimates of solution for the Navier–Stokes–Poisson equations in multi-dimensions
,”
J. Differ. Equations
248
(
7
),
1617
1636
(
2010
).
46.
Y.
Wang
, “
Decay of the Navier–Stokes–Poisson equations
,”
J. Differ. Equations
253
(
1
),
273
297
(
2012
).
47.
Y.
Wang
and
K.
Wang
, “
Asymptotic behavior of classical solutions to the compressible Navier–Stokes–Poisson equations in three and higher dimensions
,”
J. Differ. Equations
259
(
1
),
25
47
(
2015
).
48.
A.
Matsumura
and
T.
Nishida
, “
The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids
,”
Proc. Jpn. Acad., Ser. A
55
(
9
),
337
342
(
1979
).
49.
A.
Matsumura
and
T.
Nishida
, “
Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids
,”
Commun. Math. Phys.
89
(
4
),
445
464
(
1983
).
50.
H.
Liu
and
H.
Zhong
, “
Global solutions to the initial boundary problem of 3-D compressible Navier–Stokes–Poisson on bounded domains
,”
Z. Angew. Math. Phys.
72
(
2
),
78
(
2021
).
51.
H.
Chen
,
X.
Si
, and
H.
Yu
, “
Global strong solutions to the 3D non-isentropic compressible Navier-Stokes-Poisson equations in bounded domains
,”
Z. Angew. Math. Phys.
74
(
3
),
100
(
2023
).
52.
Z.
Tan
,
Y.
Wang
, and
W.
Wu
, “
Mathematical modeling and qualitative analysis of viscoelastic conductive fluids
,”
Anal. Appl.
18
(
06
),
1077
1117
(
2020
).
53.
Y.
Wang
and
W.
Wu
, “
Initial boundary value problems for the three-dimensional compressible elastic Navier-Stokes-Poisson equations
,”
Adv. Nonlinear Anal.
10
(
1
),
1356
1383
(
2021
).
54.
Y.
Wang
,
R.
Shen
,
W.
Wu
, and
C.
Zhang
, “
On the initial-boundary value problem for the three-dimensional compressible viscoelastic fluids with the electrostatic effect
,”
J. Differ. Equations
316
,
425
470
(
2022
).
55.
T. C.
Sideris
and
B.
Thomases
, “
Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit
,”
Commun. Pure Appl. Math.
58
(
6
),
750
788
(
2005
).
56.
L.
Nirenberg
, “
On elliptic partial differential equations
,”
Ann. Sc. Norm. Super. Pisa
13
,
115
162
(
1959
).
57.
N.
Ju
, “
Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space
,”
Commun. Math. Phys.
251
(
2
),
365
376
(
2004
).
58.
Y.
Wang
,
C.
Liu
, and
Z.
Tan
, “
A generalized Poisson–Nernst–Planck–Navier–Stokes model on the fluid with the crowded charged particles: Derivation and its well-posedness
,”
SIAM J. Math. Anal.
48
(
5
),
3191
3235
(
2016
).
59.
X.
Hu
and
D.
Wang
, “
Global existence for the multi-dimensional compressible viscoelastic flows
,”
J. Differ. Equations
250
(
2
),
1200
1231
(
2011
).
60.
J. P.
Bourguignon
and
H.
Brezis
, “
Remarks on the Euler equation
,”
J. Funct. Anal.
15
,
341
363
(
1974
).
61.
Y.
Kagei
and
S.
Kawashima
, “
Local solvability of an initial boundary value problem for a quasilinear hyperbolic-parabolic system
,”
J. Hyperbolic Differ. Equations
03
(
02
),
195
232
(
2006
).
62.
A.
Matsumura
and
T.
Nishida
, “
The initial value problem for the equations of motion of viscous and heat-conductive gases
,”
J. Math. Kyoto Univ.
20
(
1
),
67
104
(
1980
).
You do not currently have access to this content.