This paper is concerned with the blowup phenomenon of stochastic parabolic equations both on bounded domain and in the whole space. We introduce a new method to study the blowup phenomenon on bounded domain. Compared with the existing results, we delete the assumption that the solutions to stochastic heat equations are nonnegative. Then the blowup phenomenon in the whole space is obtained by using the properties of heat kernel. We obtain that the solutions will blow up in finite time for nontrivial initial data.

1.
B.
Hu
,
Blow-up Theories for Semilinear Parabolic Equations
,
Lecture Notes in Mathematics
(
Springer
,
New York
,
2018
).
2.
H.
Fujita
, “
On the blowing up of solutions of the Cauchy problem for ut − Δu = u1+α
,”
J. Fac. Sci. Univ. Tokyo Sect. I A Math.
13
,
109
124
(
1966
).
3.
H.
Fujita
, “
On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations
,”
Proc. Symp. Pure Math.
XVIII
,
105
113
(
1970
).
4.
K.
Hayakawa
, “
On nonexistence of global solutions of some semilinear parabolic differential equations
,”
Proc. Jpn. Acad. Ser. A: Math. Sci.
49
,
503
505
(
1973
).
5.
P. L.
Chow
,
Stochastic Partial Differential Equations
,
Applied Mathematics and Nonlinear Science Series
(
Chapman & Hall
,
Boca Raton
,
2007
).
6.
J.
Duan
and
W.
Wang
,
Effective Dynamics of Stochastic Partial Differential Equations
(
Elsevier
,
2014
).
7.
W.
Liu
and
M.
Röckner
, “
SPDE in Hilbert space with locally monotone coefficients
,”
J. Funct. Anal.
259
,
2902
2922
(
2010
).
8.
W.
Liu
and
M.
Röckner
, “
Local and global well-posedness of SPDE with generalized coercivity conditions
,”
J. Differ. Equations
254
,
725
755
(
2013
).
9.
G.
Da Prato
and
J.
Zabczyk
, “
Stochastic equations in infinite dimensions
,” in
Encyclopedia of Mathematics and its Applications
(
Cambridge University Press
,
1992
).
10.
T.
Taniguchi
, “
The existence and uniqueness of energy solutions to local non-Lipschitz stochastic evolution equations
,”
J. Math. Anal. Appl.
360
,
245
253
(
2009
).
11.
G.
Da Prato
and
J.
Zabczyk
, “
Non-explosion, boundedness, and ergodicity for stochastic semilinear equations
,”
J. Differ. Equations
98
,
181
195
(
1992
).
12.
R.
Manthey
and
T.
Zausinger
, “
Stochastic evolution equations in Lρ2ν
,”
Stochastics Stochastic Rep.
66
,
37
85
(
1999
).
13.
M.
Dozzi
and
J. A.
López-Mimbela
, “
Finite-time blowup and existence of global positive solutions of a semi-linear SPDE
,”
Stochastic Processes Appl.
120
,
767
776
(
2010
).
14.
M.
Dozzi
,
E.
Kolkovska
, and
J.
López-Mimbela
, “
Global and non-global solutions of a fractional reaction-diffusion equation perturbed by a fractional noise
,”
Stochastic Anal. Appl.
38
(
6
),
959
978
(
2020
).
15.
M.
Niu
and
B.
Xin
, “
Impacts of Gaussian noises on the blow-up times of nonlinear stochastic partial differential equations
,”
Nonlinear Anal.: Real World Appl.
13
,
1346
1352
(
2012
).
16.
P. L.
Chow
, “
Unbounded positive solutions of nonlinear parabolic Itô equations
,”
Commun. Stochastic Anal.
3
,
211
222
(
2009
).
17.
P. L.
Chow
, “
Explosive solutions of stochastic reaction-diffusion equations in mean Lp-norm
,”
J. Differ. Equations
250
,
2567
2580
(
2011
).
18.
G.
Lv
and
J.
Duan
, “
Impacts of noise on a class of partial differential equations
,”
J. Differ. Equations
258
,
2196
2220
(
2015
).
19.
M.
Li
and
H.
Gao
, “
Estimates of blow-up times of a system of semilinear SPDEs
,”
Math. Methods Appl. Sci.
40
(
11
),
4149
4159
(
2017
).
20.
G.
Lv
and
H.
Gao
, “
Impacts of noise on heat equations
,”
Discrete Contin. Dyn. Syst. B
24
(
10
),
5769
5784
(
2019
).
21.
J.
Bao
and
C.
Yuan
, “
Blow-up for stochastic reaction-diffusion equations with jumps
,”
J Theor. Probab.
29
,
617
631
(
2016
).
22.
K.
Li
,
J.
Peng
, and
J.
Jia
, “
Explosive solutions of parabolic stochastic partial differential equations with Lévy noise
,”
Discrete Contin. Dyn. Syst. A
37
,
5105
5125
(
2017
).
23.
N.
Kavallaris
and
Y.
Yan
, “
Finite-time blow-up of a non-local stochastic parabolic problem
,”
Stochastic Processes Appl.
130
(
9
),
5605
5635
(
2020
).
24.
P. L.
Chow
and
K.
Liu
, “
Positivity and explosion in mean Lp-norm of stochastic functional parabolic equations of retarded type
,”
Stochastic Processes Appl.
122
,
1709
1729
(
2012
).
25.
G.
Lv
,
L.
Wang
, and
X.
Wang
, “
Positive and unbounded solution of stochastic delayed evolution equations
,”
Stochastic Anal. Appl.
34
,
927
939
(
2016
).
26.
C.
Mueller
, “
Long time existence for the heat equation with a noise term
,”
Probab. Theory Relat. Fields
90
,
505
517
(
1991
).
27.
C.
Mueller
and
R.
Sowers
, “
Blowup for the heat equation with a noise term
,”
Probab. Theory Relat. Fields
97
,
287
320
(
1993
).
28.
A.
Agresti
and
M.
Veraar
, “
Nonlinear parabolic stochastic evolution equations in critical spaces part II: Blow-up criteria and instataneous regularization
,”
J. Evol. Equations
22
(
2
),
56
(
2022
).
29.
A.
Agresti
and
M.
Veraar
, “
Reaction-diffusion equations with transport noise and critical superlinear diffusion: Local well-posedness and positivity
,”
J. Differ. Equations
368
,
247
300
(
2023
).
30.
K.
Kuwada
and
R.
Philipowski
, “
Non-explosion of diffusion processes on manifolds with time-dependent metric
,”
Math. Z.
268
(
3-4
),
979
991
(
2011
).
31.
A.
Hocquet
, “
Finite-time singularity of the stochastic harmonic map flow
,”
Ann. Inst. Henri Poincare, Probab. Stat.
55
(
2
),
1011
1041
(
2019
).
32.
O.
Misiats
,
T.
Oleksandr
, and
I.
Topaloglu
, “
On global existence and blowup of solutions of Stochastic Keller-Segel type equation
,”
Nonlinear Differential Equations Appl.
29
(
1
),
3
(
2022
).
33.
M.
Foondun
,
W.
Liu
, and
E.
Nane
, “
Some non-existence results for a class of stochastic partial differential equations
,”
J. Differ. Equations
266
,
2575
2596
(
2019
).
34.
J. B.
Walsh
,
An Introduction to Stochastic Partial Differential Equations
,
Lecture Notes in Mathematics
(
Springer Berlin
,
1986
).
35.
S.
Sugitani
, “
On nonexistence of global solutions for some nonlinear integral equations
,”
Osaka J. Math.
12
,
45
51
(
1975
).
36.
P. L.
Chow
and
R.
Khasminskii
, “
Almost sure explosion of solutions to stochastic differential equations
,”
Stochastic Processes Appl.
124
,
639
645
(
2014
).
37.
G.
Lv
,
J.
Duan
,
L.
Wang
, and
J.
Wu
, “
Impact of noise on ordinary differential equations
,”
Dyn. Syst. Appl.
27
,
225
236
(
2018
).
You do not currently have access to this content.