To explore the effects of individual diffusion patterns, transient immunity and acquired immunity, this paper focuses on a reaction-diffusion Susceptible-Infectious-Recovered-Susceptible epidemic model with transfer from infectious to susceptible and logistic source in a heterogeneous environment. First, the uniform bounds of solutions are obtained by using Moser–Alikakos iteration method and then the threshold dynamics is established based on the basic reproduction number. After investigating the asymptotic profiles of endemic steady states for small or large motility rates, it is found that regardless of whether the diffusion rates are minimal or maximal, the disease may persist globally, which means that the restriction on the migration of population is not an effective strategy. Next, some bifurcation analysis is conducted by taking transient/acquired immunity coefficient as bifurcation parameter. Finally, the impact of spatial heterogeneity, large/small diffusion rates on the disease transmission as well as bifurcation dynamics are explored via some numerical simulations for system on a one-dimensional domain.

1.
D.
Bernoulli
, Essai d’une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l’inoculation pour la prévenir,
1766
, pp.
1
45
.
2.
R.
Ross
, “
The prevention of malaria
,”
Nature
85
,
263
264
(
1910
).
3.
W. O.
Kermack
and
A. G.
McKendrick
, “
A contribution to the mathematical theory of epidemics
,”
Proc. R. Soc. A
115
,
700
721
(
1927
).
4.
W. O.
Kermack
and
A. G.
McKendrick
, “
Contributions to the mathematical theory of epidemics. II.—The problem of endemicity
,”
Proc. R. Soc. A
138
,
57
87
(
1932
).
5.
W. O.
Kermack
and
A. G.
McKendrick
, “
Contributions to the mathematical theory of epidemics. III.—Further studies of the problem of endemicity
,”
Proc. R. Soc. A
141
,
94
122
(
1933
).
6.
J.
Mena-Lorcat
and
H. W.
Hethcote
, “
Dynamic models of infectious diseases as regulators of population sizes
,”
J. Math. Biol.
30
,
693
716
(
1992
).
7.
R. S.
Cantrell
and
C.
Cosner
,
Spatial Ecology via Reaction-Diffusion Equations
(
John Wiley & Sons, Ltd.
,
Chichester
,
2003
).
8.
L. C.
Evans
,
Partial Differential Equations
(
American Mathematical Society
,
Provindence
,
1998
).
9.
L. J. S.
Allen
,
B. M.
Bolker
,
Y.
Lou
, and
A. L.
Nevai
, “
Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model
,”
Discrete Contin. Syn. Syst.
21
,
1
20
(
2008
).
10.
B.
Li
,
H. C.
Li
, and
Y. C.
Tong
, “
Analysis on a diffusive SIS epidemic model with logistic source
,”
Z. Angew. Math. Phys.
68
,
96
(
2017
).
11.
H. C.
Li
,
R.
Peng
, and
F.-B.
Wang
, “
Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model
,”
J. Differ. Equations
262
,
885
913
(
2017
).
12.
R.
Peng
, “
Asymptotic profiles of the positive steady state for an SIS epidemic reaction–diffusion model. Part I
,”
J. Differ. Equations
247
,
1096
1119
(
2009
).
13.
R.
Peng
and
F. Q.
Yi
, “
Asymptotic profile of the positive steady state for an SIS epidemic reaction–diffusion model: Effects of epidemic risk and population movement
,”
Physica D
259
,
8
25
(
2013
).
14.
E. J.
Avila-Vales
and
Á. G.
Cervantes-Pérez
, “
Global stability for SIRS epidemic models with general incidence rate and transfer from infectious to susceptible
,”
Bol. Soc. Mat. Mex.
25
,
637
658
(
2019
).
15.
Y. Z.
Bai
and
X. Q.
Mu
, “
Global asymptotic stability of a generalized SIRS epidemic model with transfer from infectious to susceptible
,”
J. Appl. Anal. Comput.
8
,
402
412
(
2018
).
16.
W. Z.
Huang
,
M. A.
Han
, and
K. Y.
Liu
, “
Dynamics of an SIS reaction-diffusion epidemic model for disease transmission
,”
Math. Biosci. Eng.
7
,
51
66
(
2010
).
17.
T.
Li
,
F. Q.
Zhang
,
H. W.
Liu
, and
Y. M.
Chen
, “
Threshold dynamics of an SIRS model with nonlinear incidence rate and transfer from infectious to susceptible
,”
Appl. Math. Lett.
70
,
52
57
(
2017
).
18.
M.
Lu
,
J. C.
Huang
,
S. G.
Ruan
, and
P.
Yu
, “
Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate
,”
J. Differ. Equations
267
,
1859
1898
(
2019
).
19.
Y.
Yang
,
L.
Zou
,
T. H.
Zhang
, and
Y. C.
Xu
, “
Dynamical analysis of a diffusive SIRS model with general incidence rate
,”
Discrete Contin. Dyn. Syst. - B
25
,
2433
2451
(
2020
).
20.
B.
Li
and
Q. Y.
Bie
, “
Long-time dynamics of an SIRS reaction-diffusion epidemic model
,”
J. Math. Anal. Appl.
475
,
1910
1926
(
2019
).
21.
F.
Rothe
,
Global Solutions of Reaction-Diffusion Systems
(
Springer-Verlag
,
Berlin, Heidelberg
,
1984
).
22.
S. Y.
Han
,
C. X.
Lei
, and
X. Y.
Zhang
, “
Qualitative analysis on a diffusive SIRS epidemic model with standard incidence infection mechanism
,”
Z. Angew. Math. Phys.
71
,
190
213
(
2020
).
23.
C.
Liu
and
R.
Cui
, “
Qualitative analysis on an SIRS reaction–diffusion epidemic model with saturation infection mechanism
,”
Nonlinear Anal.: Real World Appl.
62
,
103364
(
2021
).
24.
Y. F.
Pan
,
S. Y.
Zhu
, and
J. L.
Wang
, “
Asymptotic profiles of a diffusive SIRS epidemic model with standard incidence mechanism and a logistic source
,”
Z. Angew. Math. Phys.
73
,
36
(
2022
).
25.
C. X.
Liu
and
R. H.
Cui
, “
Analysis on a diffusive SIRS epidemic model with logistic source and saturated incidence rate
,”
Discrete Contin. Dyn. Syst. - B
28
,
2960
2980
(
2023
).
26.
E.
Avila-Vales
and
Á. G.
Cervantes-Pérez
, “
Dynamics of a reaction–diffusion SIRS model with general incidence rate in a heterogeneous environment
,”
Z. Angew. Math. Phys.
73
,
9
(
2022
).
27.
R. M.
Anderson
and
R. M.
May
, “
Population biology of infectious diseases: Part I
,”
Nature
280
,
361
367
(
1979
).
28.
A.
Kumar
and
Nilam
, “
Stability of a time delayed SIR epidemic model along with nonlinear incidence rate and holling type-II treatment rate
,”
Int. J. Comput. Methods
15
,
1850055
(
2018
).
29.
C. J.
Wei
and
L. S.
Chen
, “
A delayed epidemic model with pulse vaccination
,”
Discrete Dyn. Nat. Soc.
2008
,
1
12
.
30.
B.
Dubey
,
P.
Dubey
, and
U. S.
Dubey
, “
Dynamics of an SIR model with nonlinear incidence and treatment rate
,”
Appl. Appl. Math.
10
,
718
737
(
2016
).
31.
J.-A.
Cui
,
Y. T.
Sun
, and
H. P.
Zhu
, “
The impact of media on the control of infectious diseases
,”
J. Dyn. Differ. Equations
20
,
31
53
(
2007
).
32.
R. H.
Martin
and
H. L.
Smith
, “
Abstract functional-differential equations and reaction-diffusion systems
,”
Proc. R. Soc. A
321
,
1
44
(
1990
).
33.
Z. J.
Du
and
R.
Peng
, “
A priori L estimates for solutions of a class of reaction-diffusion systems
,”
J. Math. Biol.
72
,
1429
1439
(
2015
).
34.
M. X.
Wang
,
Nonlinear Second Order Parabolic Equations
(
CRC Press
,
Boca Raton
,
2021
).
35.
R.
Peng
and
X.-Q.
Zhao
, “
A reaction–diffusion SIS epidemic model in a time-periodic environment
,”
Nonlinearity
25
,
1451
1471
(
2012
).
36.
D.
Gilbarg
and
N. S.
Trudinger
,
Elliptic Partial Differential Equations of Second Order
(
Springer-Verlag
,
Berlin, Heidelberg
,
2001
).
37.
P.
Magal
and
X.-Q.
Zhao
, “
Global attractors and steady states for uniformly persistent dynamical systems
,”
Proc. R. Soc. A
37
,
251
275
(
2005
).
38.
H. L.
Smith
and
X.-Q.
Zhao
, “
Robust persistence for semidynamical systems
,”
Nonlinear Anal.: Theory, Methods Appl.
47
,
6169
6179
(
2001
).
39.
X.-Q.
Zhao
,
Dynamical Systems in Population Biology
(
Springer International Publishing AG
,
Cham
,
2017
).
40.
H. R.
Thieme
, “
Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations
,”
J. Math. Biol.
30
,
755
763
(
1992
).
41.
Y.
Lou
and
W.-M.
Ni
, “
Diffusion, self-diffusion and cross-diffusion
,”
J. Differ. Equations
131
,
79
131
(
1996
).
42.
R.
Peng
,
J. P.
Shi
, and
M. X.
Wang
, “
On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law
,”
Nonlinearity
21
,
1471
1488
(
2008
).
43.
Y. H.
Du
,
R.
Peng
, and
M. X.
Wang
, “
Effect of a protection zone in the diffusive Leslie predator–prey model
,”
J. Differ. Equations
246
,
3932
3956
(
2009
).
44.
M. G.
Crandall
and
P. H.
Rabinowitz
, “
Bifurcation from simple eigenvalues
,”
J. Funct. Anal.
8
,
321
340
(
1971
).
45.
P. H.
Rabinowitz
, “
Some global results for nonlinear eigenvalue problems
,”
J. Funct. Anal.
7
,
487
513
(
1971
).
46.
J. P.
Shi
and
X. F.
Wang
, “
On global bifurcation for quasilinear elliptic systems on bounded domains
,”
J. Differ. Equations
246
,
2788
2812
(
2009
).
You do not currently have access to this content.