The Grothedieck bound formalism is studied using “rescaling transformations,” in the context of a single quantum system. The rescaling transformations enlarge the set of unitary transformations (which apply to isolated systems), with transformations that change not only the phase but also the absolute value of the wavefunction, and can be linked to irreversible phenomena (e.g., quantum tunneling, damping and amplification, etc). A special case of rescaling transformations are the dequantisation transformations, which map a Hilbert space formalism into a formalism of scalars. The Grothendieck formalism considers a “classical” quadratic form C(θ) which takes values less than 1, and the corresponding “quantum” quadratic form Q(θ) which takes values greater than 1, up to the complex Grothendieck constant kG. It is shown that Q(θ) can be expressed as the trace of the product of θ with two rescaling matrices, and C(θ) can be expressed as the trace of the product of θ with two dequantisation matrices. Values of Q(θ) in the “ultra-quantum” region (1, kG) are very important, because this region is classically forbidden [C(θ) cannot take values in it]. An example with Q(θ)(1,kG) is given, which is related to phenomena where classically isolated by high potentials regions of space, communicate through quantum tunneling. Other examples show that “ultra-quantumness” according to the Grothendieck formalism (Q(θ)(1,kG)), is different from quantumness according to other criteria (like quantum interference or the uncertainty principle).

1.
A.
Grothendieck
,
Bol. Soc. Mat. Sao Paolo
8
,
1
(
1953
).
2.
B. S.
Cirel’son
,
Lett. Math. Phys.
4
,
93
(
1980
).
3.
B. S.
Tsirelson
,
J. Sov. Math.
36
,
557
(
1987
).
4.
A.
Acin
,
N.
Gisin
, and
B.
Toner
,
Phys. Rev. A
73
,
062105
(
2006
).
5.
H.
Heydari
,
J. Phys. A: Math. Gen.
39
,
11869
(
2006
).
6.
I.
Pitowski
,
J. Math. Phys.
49
,
012101
(
2008
).
7.
J.
Briet
,
H.
Buhrman
, and
B.
Toner
,
Commun. Math. Phys.
205
,
827
(
2011
).
8.
B.
Hua
,
M.
Li
,
T.
Zhang
,
C.
Zhou
,
X.
Li-Jost
, and
S. M.
Fei
,
J. Phys. A: Math. Theor.
48
,
065302
(
2015
).
9.
F.
Hirsch
,
M. T.
Quintino
,
T.
Vertesi
,
M.
Navascues
, and
N.
Brunner
,
Quantum
1
,
3
(
2017
).
10.
J.
Lindenstrauss
and
A.
Pelczynski
,
Stud. Math.
29
,
275
(
1968
).
11.
J.
Diestel
,
J.
Fourie
, and
J.
Swart
,
The Metric Theory of Tensor Products: Grothendieck’s Resume Revisited
(
AMS
,
Rhode Island
,
2008
).
12.
13.
P. C.
Fishburn
and
J. A.
Reeds
,
SIAM J. Discrete Math.
7
,
48
(
1994
).
14.
J. L.
Krivine
,
C. R. Acad. Sci. Paris A
284
,
445
(
1977
).
15.
U.
Haagerup
,
Isr. J. Math.
60
,
199
(
1987
).
16.
A.
Vourdas
, “
Corrigendum A: (2022) J. Phys. A 55 435206 (2022)
,”
J. Phys. A: Math. Theor.
56
,
169501
(
2023
).
17.
A.
Vourdas
J. Phys. A
56
,
475203
(
2023
).
18.
J. B.
Keller
,
J. Opt. Soc. Am.
52
,
116
(
1962
).
19.
R.
Balian
and
C.
Bloch
,
Ann. Phys.
85
,
514
(
1974
).
20.
J.
Knoll
and
R.
Schaeffer
,
Ann. Phys.
97
,
307
(
1976
).
21.
A.
Vourdas
and
R. F.
Bishop
,
J. Phys. G: Nucl. Phys.
11
,
95
(
1985
).
22.
H.
Feshbach
and
Y.
Tikochinsky
,
Trans. N. Y. Acad. Sci.
38
,
44
(
1977
).
23.
G.
Ghosh
and
R. W.
Hasse
,
Phys. Rev. A
24
,
1621
(
1981
).
24.
R. F.
Bishop
and
A.
Vourdas
,
J. Phys. A
20
,
3727
(
1987
).
25.
D.
Chruscinski
and
J.
Jurkowski
,
Ann. Phys.
321
,
854
(
2006
).
26.
28.
M. D.
Kostin
,
J. Stat. Phys.
12
,
145
(
1975
).
29.
W.
Stocker
and
K.
Albrecht
,
Ann. Phys.
117
,
436
(
1979
).
30.
E.
Celeghini
,
M.
Rasetti
, and
G.
Vitiello
,
Ann. Phys.
215
,
156
(
1992
).
31.
R. P.
Feynman
and
F. L.
Vernon
,
Ann. Phys.
24
,
118
(
1963
).
32.
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys.
149
,
374
(
1983
).
33.
B. E.
Sagan
,
The Symmetric Group
(
Springer
,
Berlin
,
2001
).
34.
L. I.
Schiff
,
Quantum Mechanics
(
McGraw-Hill
,
Kogakusha
,
1968
).
35.
A.
Vourdas
and
R. M.
Weiner
,
Phys. Rev. A
36
,
5866
(
1987
).
36.
W.
Schleich
and
J. A.
Wheeler
,
Nature
326
,
574
(
1987
).
You do not currently have access to this content.