In this paper we consider the nonlocal theory for porous thermoelastic materials based on Mindlin’s strain gradient theory with nonlocal dual-phase-lag law. This makes the derived equations more physically realistic, as they overcome the infinite propagation velocity property of the Fourier law. This approach consists of adding the second strain gradient and the second volume fraction gradient field to the set of independent constituent variables. We then obtain a system of three second order time equations with higher gradient terms. Using semigroup theory, we show the well-posedness of the one-dimensional problem. By an approach based on the Gearhart–Herbst–Prüss–Huang theorem, we prove that the associated semigroup is exponentially stable but not differentiable. The lack of analyticity and the impossibility to localize the solutions in time are direct consequences.

1.
Aouadi
,
M.
, “
Stability and analyticity analysis in nonlocal Mindlin’s strain gradient thermoelasticity with voids and second sound
,”
Z. Angew. Math. Phys.
73
(
5
),
185
(
2022
).
2.
Aouadi
,
M.
,
Amendola
,
A.
, and
Tibullo
,
V.
, “
Asymptotic behavior in Form II Mindlin’s strain gradient theory for porous thermoelastic diffusion materials
,”
J. Therm. Stresses
43
(
2
),
191
209
(
2020
).
3.
Aouadi
,
M.
,
Passarella
,
F.
, and
Tibullo
,
V.
, “
Exponential stability in Mindlin’s Form II gradient thermoelasticity with microtemperatures of type III
,”
Proc. R. Soc. A
476
(
2241
),
20200459
(
2020
).
4.
Aziz
,
S.
and
Malik
,
S. A.
, “
Identification of an unknown source term for a time fractional fourth-order parabolic equation
,”
Elect. J. Diff. Equat.
2016
,
1
20
(
2016
).
5.
Borjalilou
,
V.
,
Asghari
,
M.
, and
Taati
,
E.
, “
Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect
,”
J. Vib. Control
26
(
11–12
),
1042
1053
(
2020
).
6.
Chan
,
W. L.
,
Averback
,
R. S.
,
Cahill
,
D. G.
, and
Lagoutchev
,
A.
, “
Dynamics of femtosecond laser-induced melting of silver
,”
Phys. Rev. B
78
(
21
),
214107
(
2008
).
7.
Chiriţă
,
S.
and
Zampoli
,
V.
, “
Wave propagation in porous thermoelasticity with two delay times
,”
Math. Methods Appl. Sci.
45
(
3
),
1498
1512
(
2022
).
8.
Cowin
,
S. C.
and
Nunziato
,
J. W.
, “
Linear elastic materials with voids
,”
J. Elasticity
13
,
125
147
(
1983
).
9.
Engel
,
K.-J.
and
Nagel
,
R.
,
One Parameter Semigroups for Linear Evolution Equations
(
Springer-Verlag
,
New York
,
2000
).
10.
Eringen
,
A. C.
, “
Linear theory of nonlocal elasticity and dispersion of plane waves
,”
Int. J. Eng. Sci.
10
(
5
),
425
435
(
1972
).
11.
Eringen
,
A. C.
, “
On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves
,”
J. Appl. Phys.
54
(
9
),
4703
4710
(
1983
).
12.
Eringen
,
A. C.
,
Nonlocal Continuum Field Theories
(
Springer
,
2002
).
13.
Gearhart
,
L.
, “
Spectral theory for contraction semigroups on Hilbert space
,”
Trans. Am. Math. Soc.
236
,
385
394
(
1978
).
14.
Ieşan
,
D.
,
Thermoelastic Models of Continua
(
Kluwer Academic Publishers
,
Dordrecht
,
2004
).
15.
Ieşan
,
D.
, “
A gradient theory of porous elastic solids
,”
Z. Angew. Math. Mech.
100
(
7
),
1
18
(
2020
).
16.
Ieşan
,
D.
and
Quintanilla
,
R.
, “
A second gradient theory of thermoelasticity
,”
J. Elasticity
154
,
629
643
(
2023
).
17.
Fernández
,
J. R.
,
Magaña
,
A.
, and
Quintanilla
,
R.
, “
On the exponential decay of solutions in dual-phase-lag porous thermoelasticity
,” in
11th Chaotic Modeling and Simulation International Conference
(
Springer
,
2019
).
18.
Liu
,
Z.
and
Quintanilla
,
R.
, “
Time decay in dual-phase-lag thermoelasticity: Critical case
,”
Commun. Pure Appl. Anal.
17
(
1
),
177
190
(
2018
).
19.
Liu
,
Z.
and
Quintanilla
,
R.
, “
Dual-phase-lag one-dimensional thermo-porous-elasticity with microtemperatures
,”
Comput. Appl. Math.
40
(
6
),
231
(
2021
).
20.
Liu
,
Z.
and
Zheng
,
S.
,
Semigroups Associated with Dissipative Systems
,
CRC Research Notes in Mathematics Vol. 398
(
Chapman & Hall
,
Boca Raton
,
1999
).
21.
Magaña
,
A.
,
Miranville
,
A.
, and
Quintanilla
,
R.
, “
On the stability in phase-lag heat conduction with two temperatures
,”
J. Evol. Equations
18
,
1697
1712
(
2018
).
22.
Magaña
,
A.
and
Quintanilla
,
R.
, “
Decay of solutions for second gradient viscoelasticity with type II heat conduction
,”
Evol. Equations Control Theory
13
,
787
801
(
2024
).
23.
Mindlin
,
R.
, “
Micro-structure in linear elasticity
,”
Arch. Ration. Mech. Anal.
16
,
51
78
(
1964
).
24.
Mindlin
,
R.
, “
Second gradient of strain and surface-tension in linear elasticity
,”
Int. J. Solids Struct.
1
(
4
),
417
438
(
1965
).
25.
Mondal
,
S.
,
Sarkar
,
N.
, and
Sarkar
,
N.
, “
Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity
,”
J. Therm. Stresses
42
(
8
),
1035
1050
(
2019
).
26.
Mukhopadhyay
,
S.
,
Prasad
,
R.
, and
Kumar
,
R.
, “
On the theory of two-temperature thermoelasticity with two phase-lags
,”
J. Therm. Stresses
34
(
4
),
352
365
(
2011
).
27.
Nunziato
,
J. W.
and
Cowin
,
S. C.
, “
A nonlinear theory of elastic materials with voids
,”
Arch. Ration. Mech. Anal.
72
,
175
201
(
1979
).
28.
Pazy
,
A.
,
Semigroups of Linear Operators and Applications to Partial Differential Equations
,
Applied Mathematical Sciences Vol. 44
(
Springer-Verlag
,
New York
,
1983
).
29.
Prüss
,
J.
, “
On the spectrum of C0-semigroups
,”
Trans. Am. Math. Soc.
284
(
2
),
847
(
1984
).
30.
Quintanilla
,
R.
, “
Exponential stability in the dual-phase-lag heat conduction theory
,”
J. Non-Equilib. Thermodyn.
27
,
217
227
(
2002
).
31.
Quintanilla
,
R.
, “
A well-posed problem for the dual-phase-lag heat conduction
,”
J. Therm. Stresses
31
(
3
),
260
269
(
2008
).
32.
Quintanilla
,
R.
and
Jordan
,
P. M.
, “
A note on the two temperature theory with dual-phase-lag delay: Some exact solutions
,”
Mech. Res. Commun.
36
(
7
),
796
803
(
2009
).
33.
Rivera
,
J. M.
,
Ochoa
,
E. O.
, and
Quintanilla
,
R.
, “
Time decay of viscoelastic plates with type II heat conduction
,”
J. Math. Anal. Appl.
528
(
2
),
127592
(
2023
).
34.
Toupin
,
R.
, “
Elastic materials with couple-stresses
,”
Arch. Ration. Mech. Anal.
11
(
1
),
385
414
(
1962
).
35.
Tzou
,
D. Y.
,
Macro- to Micro-Scale Heat Transfer: The Lagging Behavior
(
CRC Press
,
1966
).
36.
Tzou
,
D. Y.
, “
The generalized lagging response in small-scale and high-rate heating
,”
Int. J. Heat Mass Transfer
38
(
17
),
3231
3240
(
1995
).
37.
Tzou
,
D. Y.
, “
Nonlocal behavior in phonon transport
,”
Int. J. Heat Mass Transfer
54
(
1–3
),
475
481
(
2011
).
38.
Tzou
,
D. Y.
and
Guo
,
Z. Y.
, “
Nonlocal behavior in thermal lagging
,”
Int. J. Therm. Sci.
49
(
7
),
1133
1137
(
2010
).
39.
Yang
,
W.
and
Chen
,
Z.
, “
Nonlocal dual-phase-lag heat conduction and the associated nonlocal thermal-viscoelastic analysis
,”
Int. J. Heat Mass Transfer
156
,
119752
(
2020
).
40.
Yu
,
Y. J.
,
Li
,
C.-L.
,
Xue
,
Z. N.
, and
Tian
,
X.-G.
, “
The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale
,”
Phys. Lett. A
380
(
1–2
),
255
261
(
2016
).
41.
Zenkour
,
A. M.
, “
Wave propagation of a gravitated piezo-thermoelastic half-space via a refined multi-phase-lags theory
,”
Mech. Adv. Mater. Struct.
27
(
22
),
1923
1934
(
2020
).
42.
Zenkour
,
A. M.
, “
Thermo-diffusion of solid cylinders based upon refined dual-phase-lag models
,”
Multidiscip. Model. Mater. Struct.
16
(
6
),
1417
1434
(
2020
).
43.
Zenkour
,
A. M.
and
Abouelregal
,
A. E.
, “
The nonlocal dual phase lag model of a thermoelastic nanobeam subjected to a sinusoidal pulse heating
,”
Int. J. Comput. Methods Eng. Sci. Mech.
16
(
1
),
44
52
(
2015
).
44.
Zenkour
,
A. M.
,
Saeed
,
T.
, and
Aati
,
A. M.
, “
Analyzing the thermoelastic responses of biological tissue exposed to thermal shock utilizing a three-phase lag theory
,”
J. Comput. Appl. Mech.
55
(
2
),
144
164
(
2024
).
45.
Zhou
,
H.
and
Li
,
P.
, “
Nonlocal dual-phase-lagging thermoelastic damping in rectangular and circular micro/nanoplate resonators
,”
Appl. Math. Modell.
95
,
667
687
(
2021
).
You do not currently have access to this content.