The method of nonlinearization of the Lax pair is developed for the Ablowitz-Kaup-Newell-Segur (AKNS) equation in the presence of space-inverse reductions. As a result, we obtain a new type of finite-dimensional Hamiltonian systems: they are nonlocal in the sense that the inverse of the space variable is involved. For such nonlocal Hamiltonian systems, we show that they preserve the Liouville integrability and they can be linearized on the Jacobi variety. We also show how to construct the algebro-geometric solutions to the AKNS equation with space-inverse reductions by virtue of our nonlocal finite-dimensional Hamiltonian systems. As an application, algebro-geometric solutions to the AKNS equation with the Dirichlet and with the Neumann boundary conditions, and algebro-geometric solutions to the nonlocal nonlinear Schrödinger (NLS) equation are obtained. nonlocal finite-dimensional integrable Hamiltonian system, algebro-geometric solution, Dirichlet (Neumann) boundary, nonlocal NLS equation.

1.
C. W.
Cao
, “
A cubic system which generates Bargmann potential and N-gap potential
,”
Chin. Q. J. Math.
3
,
90
96
(
1988
).
2.
C. W.
Cao
, “
Nonlinearization of the Lax system for AKNS hierarchy
,”
Sci. China Ser. A
33
,
528
536
(
1990
).
3.
C. W.
Cao
and
X. G.
Geng
,
Classical integrable systems generated through nonlinearization of eigenvalue problems
, in
Nonlinear Physics, Research Reports in Physics
, edited by
C.
Gu
et al
(
Springer-Verlag
,
Berlin
,
1990
), pp.
66
78
.
4.
C. W.
Cao
,
Y. T.
Wu
, and
X. G.
Geng
, “
Relation between the Kadometsev–Petviashvili equation and the confocal involutive system
,”
J. Math. Phys.
40
,
3948
3970
(
1999
).
5.
R. G.
Zhou
, “
The finite-band solution of Jaulent-Miodek equation
,”
J. Math. Phys.
38
,
2335
2546
(
1997
).
6.
C. W.
Cao
,
X. G.
Geng
, and
Y. T.
Wu
, “
From the special 2 + 1 Toda lattice to the Kadomtsev-Petviashvili equation
,”
J. Phys. A: Math. Gen.
32
,
8059
8078
(
1999
).
7.
X. G.
Geng
,
H. H.
Dai
, and
J. Y.
Zhu
, “
Decomposition of the discrete Ablowitz-Ladik hierarchy
,”
Stud. Appl. Math.
118
,
281
312
(
2007
).
8.
Z. J.
Qiao
, “
r-matrix and algebraic-geometric solution for integrable symplectic map
,”
Chin. Sci. Bull.
44
,
114
118
(
1999
).
9.
Z. J.
Qiao
, “
The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold
,”
Commun. Math. Phys.
239
,
309
341
(
2003
).
10.
G.
Xianguo
, “
Finite-dimensional discrete systems and integrable systems through nonlinearization of the discrete eigenvalue problem
,”
J. Math. Phys.
34
,
805
817
(
1993
).
11.
Y. B.
Zeng
and
S.
Rauch-Wojciechowski
, “
Continuous limits for the Kac-Van Moerbeke hierarchy and for their restricted flows
,”
J. Phys. A: Math. Gen.
28
,
3825
3840
(
1995
).
12.
W. X.
Ma
and
W.
Strampp
, “
An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems
,”
Phys. Lett. A
185
,
277
286
(
1994
).
13.
Y. S.
Li
and
W. X.
Ma
, “
Binary nonlinearization of AKNS spectral problem under higher-order symmetry constraints
,”
Chaos, Solitons Fractals
11
,
697
710
(
2000
).
14.
R. G.
Zhou
, “
Finite-dimensional integrable Hamiltonian systems related to the nonlinear Schrödinger equation
,”
Stud. Appl. Math.
123
,
311
335
(
2009
).
15.
X. X.
Xu
,
C. W.
Cao
, and
F.
Nijhoff
, “
Algebro-geometric integration of the Q1 lattice equation via nonlinear integrable symplectic maps
,”
Nonlinearity
34
,
2897
2918
(
2021
).
16.
M. J.
Ablowitz
,
D. J.
Kaup
,
A. C.
Newell
, and
H.
Segur
, “
The inverse scattering transform-Fourier analysis for nonlinear problems
,”
Stud. Appl. Math.
53
,
249
315
(
1974
).
17.
J.
Moser
, “
Various aspects of integrable Hamiltonian systems
,” in
Proceedings, CIME Conference, Bressanone, Italy, June 1978. Progress in Mathematics
(
Birkhauser
,
1980
), Vol.
8
.
18.
J.
Moser
, “
Geometry of quadrics and spectral theory
,” in
The Chern Symposium, Berkeley, June 1979
(
Springer
,
New York
,
1980
), pp.
147
188
.
19.
E. K.
Sklyanin
, “
Boundary conditions for integrable equations
,”
Funct. Anal. Appl.
21
(
2
),
164
166
(
1987
).
20.
I. T.
Habibullin
, “
The Bäcklund transformation and integrable initial boundary value problems
,”
Mat. Zametki
49
(
4
),
130
137
(
1991
).
21.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Integrable nonlocal nonlinear Schrödinger equation
,”
Phys. Rev. Lett.
110
,
064105
(
2013
).
22.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation
,”
Nonlinearity
29
,
915
(
2016
).
23.
A. S.
Fokas
, “
Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation
,”
Nonlinearity
29
,
319
324
(
2016
).
24.
V. S.
Gerdjikov
and
A.
Saxena
, “
Complete integrability of nonlocal nonlinear Schrödinger equation
,”
J. Math. Phys.
58
,
013502
(
2017
).
25.
V.
Caudrelier
, “
Interplay between the inverse scattering method and Fokas’s unified transform with an application
,”
Stud. Appl. Math.
140
,
3
26
(
2018
).
26.
O.
Babelon
and
C. M.
Viallet
, “
Hamiltonian structures and Lax equations
,”
Phys. Lett. B
237
,
411
416
(
1990
).
27.
L. D.
Faddeev
and
L. A.
Takhtajan
,
Hamiltonian Methods in the Theory of Solitons
(
Springer
,
2007
).
28.
V. I.
Arnold
,
Mathematical Methods in Classical Mechanics
(
Springer
,
Berlin
,
1978
).
29.
P.
Griffith
and
J.
Harris
,
Principles of Algebraic Geometry
(
Wiley
,
New York
,
1994
).
30.
D.
Munford
,
Tata Lectures on Theta I
(
Birkhäuser
,
Boston
,
1982
).
31.
E. D.
Belokolos
,
A. I.
Bobenko
,
V. Z.
Enolskii
,
A. R.
Its
, and
V. B.
Matveev
,
Algebro-Gemetric Approach to Nonlinear Integrable Equations
(
Springer-Verlag
,
1994
).
32.
A. O.
Smirnov
, “
A matrix analogue of the Appell theorem and reduction of multidimensional Riemann theta-functions
,”
Math. USSR Sb.
61
(
2
),
379
388
(
1988
).
33.
A. O.
Smirnov
and
V. B.
Matveev
, “
Finite-gap solutions of nonlocal equations in Ablowitz-Kaup-Newell-Segur hierarchy
,”
Ufa Math. J.
13
(
2
),
81
98
(
2021
).
34.
R. F.
Bikbaev
and
A. R.
Its
, “
Algebrogeometric solutions of a boundary-value problem for the nonlinear Schrödinger equation
,”
Math. Notes Acad. Sci. USSR
45
(
5
),
349
354
(
1989
).
35.
J.
Frauendiener
and
C.
Klein
, “
Computational approach to hyperelliptic Riemann surfaces
,”
Lett. Math. Phys.
105
,
379
(
2015
).
36.
A. I.
Bobenko
and
C.
Klein
,
Computational Approach to Riemann Surfaces
(
Springer
,
2011
).
37.
E.
Corrigan
and
R.
Parini
, “
Type I integrable defects and finite-gap solutions for KdV and sine-Gordon models
,”
J. Phys. A: Math. Theor.
50
,
284001
(
2017
).
38.
J.
Moser
and
A. P.
Veselov
,
Commun. Math. Phys.
139
,
217
(
1991
).
39.
M.
Bruschi
,
O.
Ragnisco
,
P. M.
Santini
, and
T.
Gui-Zhang
,
Physica D
49
,
273
(
1991
).
40.
O.
Ragnisco
,
Research Reports in Physics
,
Proceedings Conference on Solitons and Chaos, Brusels, 1990
(
Springer
,
Berlin
,
1991
), p.
227
.
41.
R. F.
Bikbaev
and
V. O.
Tarasov
, “
Initial boundary value problem for the nonlinear Schrodinger equation
,”
J. Phys. A: Math. Gen.
24
,
2507
(
1991
).
42.
V. O.
Tarasov
, “
The integrable initial-boundary value problem on a semiline: Nonlinear Schrödinger and sine-Gordon equations
,”
Inverse Probl.
7
,
435
(
1991
).
43.
A. S.
Fokas
,
A Unified Approach to Boundary Value Problems
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
2008
), Vol.
27
.
44.
G.
Biondini
and
G.
Hwang
, “
Solitons, boundary value problems and a nonlinear method of images
,”
J. Phys. A: Math. Theor.
42
,
205207
(
2009
).
45.
G.
Biondini
and
A.
Bui
, “
On the nonlinear Schrödinger equation on the half line with homogeneous Robin boundary conditions
,”
Stud. Appl. Math.
129
(
3
),
249
271
(
2012
).
46.
V.
Caudrelier
and
Q. C.
Zhang
, “
Vector nonlinear Schrödinger equation on the half-line
,”
J. Phys. A: Math. Theor.
45
,
105201
(
2012
).
47.
C.
Zhang
, “
Dressing the boundary: On soliton solutions of the nonlinear Schrödinger equation on the half-line
,”
Stud. Appl. Math.
142
,
190
212
(
2019
).
48.
V.
Caudrelier
,
N.
Crampe
, and
C. M.
Dibaya
, “
Nonlinear mirror image method for nonlinear Schrödinger equation: Absorption/emission of one soliton by a boundary
,”
Stud. Appl. Math.
148
,
715
757
(
2022
).
49.
P.
Tempesta
,
P.
Winternitz
,
J.
Harnad
,
J. W.
Miller
,
G.
Pogosyan
, and
M.
Rodriguez
,
Superintegrability and Guantum Systems
(
American Mathematical Society
,
2005
).
50.
F.
Fassó
, “
Superintegrable Hamiltonian systems: Geometry and perturbations
,”
Acta Appl. Math.
87
,
93
(
2005
).
51.
R. G.
Smirnov
and
P.
Winternitz
, “
A class of superintegrable systems of calogero type
,”
J. Math. Phys.
47
,
093505
(
2006
).
52.
A.
Ballesteros
and
F. J.
Herranz
, “
Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature
,”
J. Phys. A: Math. Theor.
40
,
F51
F59
(
2007
).
53.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr.
, “
Fine structure for 3D second-order superintegrable systems: Three-parameter potentials
,”
J. Phys. A: Math. Theor.
40
,
5875
5892
(
2007
).
54.
R. G.
Zhou
and
X. L.
Hu
, “
From integrable to superintegrable
,”
J. Phys. A: Math. Theor.
42
,
175401
(
2009
).
55.
X.
Wang
and
D. L.
Du
, “
A nonlocal finite-dimensional integrable system related to the nonlocal nonlinear Schrödinger equation hierarchy
,”
Int. J. Geom. Methods Mod. Phys.
21
,
2450045
(
2023
).
You do not currently have access to this content.