We generalize σ-matrices to higher arities using the polyadization procedure proposed by the author. We build the nonderived n-ary version of SU2 using cyclic shift block matrices. We introduce the polyadic trace, which has an additivity property analogous to the ordinary trace for block diagonal matrices. The so called elementary Σ-matrices are ordinary matrix units, their sums are full Σ-matrices which can be treated as a polyadic analog of σ-matrices. The expression of n-ary SU2 in terms of full Σ-matrices is given using the Hadamard product. We then generalize the Pauli group in two ways: for the binary case we introduce the extended phase shifted σ-matrices with multipliers in cyclic groups of order 4q (q > 4), and for the polyadic case we construct the correspondent finite n-ary semigroup of phase-shifted elementary Σ-matrices of order 4qn1+1, and the finite n-ary group of phase-shifted full Σ-matrices of order 4q. Finally, we introduce the finite n-ary group of heterogeneous full Σhet-matrices of order 4qn14. Some examples of the lowest arities are presented.

1et al..
Bagarello
,
F.
,
Bavuma
,
Y.
, and
Russo
,
F. G.
, “
Topological decompositions of the Pauli group and their influence on dynamical systems
,”
Math. Phys. Anal. Geom.
24
,
16
20
(
2021
).
2et al..
Bagarello
,
F.
,
Bavuma
,
Y.
, and
Russo
,
F. G.
, “
On the Pauli group on 2-qubits in dynamical systems with pseudofermions
,”
Forum Math.
36
,
585
597
(
2024
).
3et al..
Ball
,
S.
,
Centelles
,
A.
, and
Huber
,
F.
, “
Quantum error-correcting codes and their geometries
,”
Ann. Inst. Henri Poincare, Sect. D
10
,
337
405
(
2023
).
4.
Bavuma
,
Y.
and
Russo
,
F. G.
, “
Dynamical systems involving pseudo-fermionic operators and generalized quaternion groups
,” in
Quantum Mathematics II
,
Springer INdAM Series
(
Springer
,
Singapore
,
2023
) pp.
3
16
.
5et al..
Besche
,
H. U.
,
Eick
,
B.
, and
O’Brien
,
E. A.
, “
The groups of order at most 2000
,”
Electron. Res. Announce Am. Math. Soc.
7
,
1
4
(
2001
).
6et al..
Besche
,
H. U.
,
Eick
,
B.
, and
O’Brien
,
E.
, “
A millennium project: Constructing small groups
,”
Int. J. Algebra Comput.
12
,
623
644
(
2002
).
7.
Bouc
,
S.
and
Mazza
,
N.
, “
The Dade group of (almost) extraspecial p-groups
.”
J. Pure Appl. Algebra
192
,
21
51
(
2004
).
8et al..
Conway
,
J. H.
,
Curtis
,
R. T.
,
Norton
,
S. P.
,
Parker
,
R. A.
, and
Wilson
,
R. A.
,
Atlas of Finite Groups
(
Oxford University Press
,
Oxford
,
1986
).
9et al..
Cooper
,
F.
,
Khare
,
A.
, and
Sukhatme
,
U.
,
Supersymmetry in Quantum Mechanics
(
World Scientific
,
River Edge, NJ
,
2001
), p.
xii+210
.
10et al..
Distler
,
A.
,
Jefferson
,
C.
,
Kelsey
,
T.
, and
Kotthoff
,
L.
, “
The semigroups of order 10
,” in
Principles and Practice of Constraint Programming
,
Lecture Notes in Computer Science
, edited by
Milano
,
M.
(
Springer
,
Berlin-Heidelberg
,
2012
), Vol.
7514
, pp.
883
899
.
11.
Djordjevic
,
I.
,
Quantum Information Processing, Quantum Computing, and Quantum Error Correction: An Engineering Approach
, 2nd ed. (
Elsevier/Academic Press
,
Amsterdam
,
2021
).
12.
Duplij
,
S.
,
Polyadic Algebraic Structures
(
IOP Publishing
,
Bristol
,
2022
), p.
461
.
13.
Duplij
,
S.
, “
Polyadic supersymmetry
,” arXiv: hep-th/2406.02188 (
2024
).
14.
Dörnte
,
W.
, “
Unterschungen über einen verallgemeinerten Gruppenbegriff
,”
Math. Z.
29
,
1
19
(
1929
).
15et al..
Feynman
,
R. P.
,
Leighton
,
R. B.
, and
Sands
,
M.
,
The Feynman Lectures on Physics
,
Quantum Mechanics
(
Addison-Wesley
,
Reading, MA
,
1965
), Vol.
3
.
16et al..
Gangopadhyaya
,
A.
,
Bougie
,
J.
, and
Rasinariu
,
C.
,
Supersymmetric Quantum Mechanics
, 2nd ed. (
World Scientific
,
2017
).
17.
Junker
,
G.
,
Supersymmetric Methods in Quantum and Statistical Physics
(
Springer-Verlag
,
Berlin
,
1996
), p.
172
.
18.
Kibler
,
M. R.
, “
An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group
,”
J. Phys. A: Math. Theor.
42
,
353001
(
2009
).
19.
Liboff
,
R. L.
,
Introductory Quantum Mechanics
(
Addison-Wesley
,
2002
).
20.
Nielsen
,
M. A.
and
Chuang
,
I. L.
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
Cambridge
,
2000
), p.
676
.
21.
Schiff
,
L. I.
,
Quantum Mechanics
(
McGraw-Hill
,
New York
,
1968
).
22.
Shelah
,
S.
and
J.
Steprāns
, “
Extraspecial p-groups
,”
Ann. Pure Appl. Logic
34
,
87
97
(
1987
).
23.
Sloane
,
N. J. A.
and
Plouffe
,
S.
,
The Encyclopedia of Integer Sequences
(
Academic Press
,
1995
), p.
xiv+587
.
24.
Stancu
,
R.
, “
Almost all generalized extraspecial p-groups are resistant
,”
J. Algebra
249
,
120
126
(
2002
).
25.
Witten
,
E.
, “
Dynamical breaking of supersymmetry
,”
Nucl. Phys. B
188
,
513
554
(
1981
).
You do not currently have access to this content.