Elastic collisions of solitons generally have a finite phase shift. When the phase shift has a finitely large value, the two vertices of the (2 + 1)-dimensional two-soliton are significantly separated due to the phase shift, accompanied by the formation of a local structure connecting the two V-shaped solitons. We define this local structure as the stem structure. This study systematically investigates the localized stem structures between two solitons in the (2 + 1)-dimensional asymmetric Nizhnik–Novikov–Veselov system. These stem structures, arising from quasi-resonant collisions between the solitons, exhibit distinct features of spatial locality and temporal invariance. We explore two scenarios: one characterized by weakly quasi-resonant collisions (i.e. a12 ≈ 0), and the other by strongly quasi-resonant collisions (i.e. a12 ≈ +). Through mathematical analysis, we extract comprehensive insights into the trajectories, amplitudes, and velocities of the soliton arms. Furthermore, we discuss the characteristics of the stem structures, including their length and extreme points. Our findings shed new light on the interaction between solitons in the (2 + 1)-dimensional asymmetric Nizhnik–Novikov–Veselov system.

1.
C. S.
Gardner
,
J. M.
Greene
,
M. D.
Kruskal
, and
R. M.
Miura
, “
Method for solving the Korteweg-deVries equation
,”
Phys. Rev. Lett.
19
,
1095
1097
(
1967
).
2.
F.
Hagemann
and
F.
Hettlich
, “
Application of the second domain derivative in inverse electromagnetic scattering
,”
Inverse Probl.
36
,
125002
(
2020
).
3.
V. B.
Matveev
and
M. A.
Salle
,
Darboux Transformations and Solitons
(
Springer-Verlag
,
Berlin
,
1991
).
4.
C. H.
Gu
,
H. S.
Hu
, and
Z. X.
Zhou
,
Darboux Transformations in Integrable Systems
(
Springer
,
Dortrecht
,
2006
).
5.
J. S.
He
,
L.
Zhang
,
Y.
Cheng
, and
Y. S.
Li
, “
Determinant representation of Darboux transformation for the AKNS system
,”
Sci. China, Ser. A: Math.
49
,
1867
1878
(
2006
).
6.
J. S.
He
,
H. R.
Zhang
,
L. H.
Wang
,
K.
Porsezian
, and
A. S.
Fokas
, “
Generating mechanism for higher-order rogue waves
,”
Phys. Rev. E
87
,
052914
(
2013
).
7.
R.
Hirota
,
The Direct Method in Soliton Theory
(
Cambridge University Press
,
Cambridge
,
2004
).
8.
B. K.
Berntson
,
E.
Langmann
, and
J.
Lenells
, “
On the non-chiral intermediate long wave equation: II. Periodic case
,”
Nonlinearity
35
,
4517
4548
(
2022
).
9.
J. G.
Rao
,
A. S.
Fokas
, and
J. S.
He
, “
Doubly localized two-dimensional rogue waves in the Davey–Stewartson I equation
,”
J. Nonlinear Sci.
31
,
67
(
2021
).
10.
J. G.
Rao
,
J. S.
He
, and
Y.
Cheng
, “
The Davey–Stewartson I equation: Doubly localized two-dimensional rogue lumps on the background of homoclinic orbits or constant
,”
Lett. Math. Phys.
112
,
75
(
2022
).
11.
N.
Zabusky
and
M.
Kruskal
, “
Interaction of solitons in a collisionless plasma and the recurrence of initial states
,”
Phys. Rev. Lett.
15
,
240
(
1965
).
12.
C. S.
Gardner
,
J. M.
Greene
,
M. D.
Kruskal
, and
R. M.
Miura
, “
Korteweg-deVries equation and generalizations VI: Methods for exact solution
,”
Commun. Pure Appl. Math.
27
,
97
133
(
1974
).
13.
M. J.
Ablowitz
and
H.
Segur
,
Solitons and the Inverse Scattering Transform
(
SIAM
,
Philadelphia
,
1981
).
14.
M. J.
Ablowitz
and
P. A.
Clarkson
,
Solitons: Nonlinear Evolution Equations and Inverse Scattering
(
Cambridge University Press
,
Cambridge
,
1991
).
15.
A. C.
Newell
,
Solitons in Mathematics and Physics
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
1985
).
16.
J.
Miles
, “
Resonantly interacting solitary waves
,”
J. Fluid Mech.
79
,
171
179
(
1977
).
17.
H.
Yeh
,
W.
Li
, and
Y.
Kodama
, “
Mach reflection and KP solitons in shallow water
,”
Eur. Phys. J.: Spec. Top.
185
,
97
(
2010
).
18.
T.
Maxworthy
, “
On the formation of nonlinear internal waves from the gravitational collapse of mixed regions in two and three dimensions
,”
J. Fluid Mech.
96
,
47
64
(
1980
).
19.
F.
Kako
and
N.
Yajima
, “
Interaction of ion-acoustic solitons in two-dimensional space
,”
J. Phys. Soc. Jpn.
49
,
2063
2071
(
1980
).
20.
K.
Ohkuma
and
M.
Wadati
, “
The Kadomtsev-Petviashvili equation: The trace method and the soliton resonances
,”
J. Phys. Soc. Jpn.
52
,
749
760
(
1983
).
21.
M. J.
Ablowitz
and
D. E.
Baldwin
, “
Nonlinear shallow ocean-wave soliton interactions on flat beaches
,”
Phys. Rev. E
86
,
036305
(
2012
).
22.
M.
Boiti
,
J. J. P.
Leon
,
M.
Manna
, and
F.
Pempinelli
, “
On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions
,”
Inverse Probl.
2
,
271
(
1986
).
23.
R.
Hirota
and
J.
Satsuma
, “
N-soliton solutions of model equations for shallow water waves
,”
J. Phys. Soc. Jpn.
40
,
611
(
1976
).
24.
S. Y.
Lou
and
X. B.
Hu
, “
Infinitely many Lax pairs and symmetry constraints of the KP equation
,”
J. Math. Phys.
38
,
6401
(
1997
).
25.
P. A.
Clarkson
and
E. L.
Mansfield
, “
On a shallow wave equation
,”
Nonlinearity
7
,
795
(
1994
).
26.
P. G.
Estévez
and
S.
Leble
, “
A wave equation in 2 + 1: Painleve analysis and solutions
,”
Inverse Probl.
11
,
925
(
1995
).
27.
H. Y.
Ruan
and
Y. X.
Chen
, “
Restudy of the structures and interactions of the soliton in the asymmetric Nizhnik–Novikov–Veselov equation
,”
J. Phys. A: Math. Gen.
37
,
2709
(
2004
).
28.
H. C.
Hu
,
X. Y.
Tang
,
S. Y.
Lou
, and
Q. P.
Liu
, “
Variable separation solutions obtained from Darboux transformations for the asymmetric Nizhnik–Novikov–Veselov system
,”
Chaos, Solitons Fractals
22
,
327
(
2004
).
29.
E.
Fan
, “
Quasi-periodic waves and an asymptotic property for the asymmetrical Nizhnik–Novikov–Veselov equation
,”
J. Phys. A: Math. Theor.
42
,
095206
(
2009
).
30.
A. M.
Wazwaz
, “
Structures of multiple soliton solutions of the generalized, asymmetric and modified Nizhnik–Novikov–Veselov equations
,”
Appl. Math. Comput.
218
,
11344
11349
(
2012
).
31.
Z.
Zhao
,
Y.
Chen
, and
B.
Han
, “
Lump soliton, mixed lump stripe and periodic lump solutions of a (2 + 1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation
,”
Mod. Phys. Lett. B
31
,
1750157
(
2017
).
32.
J. G.
Liu
, “
Lump-type solutions and interaction solutions for the (2 + 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation
,”
Eur. Phys. J. Plus
134
,
56
(
2019
).
33.
J.
Manafian
,
O. A.
Ilhan
,
L.
Avazpour
, and
A.
Alizadeh
, “
N-lump and interaction solutions of localized waves to the (2 + 1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation arise from a model for an incompressible fluid
,”
Math. Methods Appl. Sci.
43
,
9904
9927
(
2020
).
34.
L. J.
Guo
,
J. S.
He
, and
D.
Mihalache
, “
Rational and semi-rational solutions to the asymmetric Nizhnik–Novikov–Veselov system
,”
J. Phys. A: Math. Theor.
54
,
095703
(
2021
).
35.
L. J.
Guo
,
L. H.
Wang
,
L.
Chen
, and
J. S.
He
, “
Dynamics of the rogue lump in the asymmetric Nizhnik–Novikov–Veselov system
,”
Stud. Appl. Math.
151
,
35
59
(
2023
).
36.
Z. L.
Zhao
and
L. C.
He
, “
Resonance Y-type soliton and hybrid solutions of a (2 + 1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation
,”
Appl. Math. Lett.
122
,
107497
(
2021
).
37.
L.
Jiang
,
X.
Li
, and
B.
Li
, “
Resonant collisions among diverse solitary waves of the (2 + 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation
,”
Phys. Scr.
97
,
115201
(
2022
).
38.
R.
Radha
and
M.
Lakshmanan
, “
Singularity analysis and localized coherent structures in (2 + 1)-dimensional generalized Korteweg–de Vries equations
,”
J. Math. Phys.
35
,
4746
4756
(
1994
).
39.
Y.
Matsuno
,
Bilinear Transformation Method
(
Academic
,
New York
,
1984
).
40.
L. J.
Guo
,
M.
Zhu
, and
J. S.
He
, “
Asymptotic analysis of the higher-order lump in the Davey-Stewartson I equation
,”
J. Math. Phys.
64
,
123505
(
2023
).
41.
K.
Nishinari
,
K.
Abe
, and
J.
Satsuma
, “
A new-type of soliton behavior in a two dimensional plasma system
,”
J. Phys. Soc. Jpn.
62
,
2021
2029
(
1993
).
42.
G.
Biondini
,
D.
Kireyev
, and
K.
Maruno
, “
Soliton resonance and web structure in the Davey–Stewartson system
,”
J. Phys. A: Math. Theor.
55
,
305701
(
2022
).
You do not currently have access to this content.