In the present work we present a general framework which guarantees the existence of optimal domains for isoperimetric problems within the class of C1,1-regular domains satisfying a uniform ball condition as long as the desired objective function satisfies certain properties. We then verify that the helicity isoperimetric problem studied in [Cantarella et al., J. Math. Phys. 41, 5615 (2000)] satisfies the conditions of our framework and hence establish the existence of optimal domains within the given class of domains. We additionally use the same framework to prove the existence of optimal domains among uniform C1,1-domains for a first curl eigenvalue problem which has been studied recently for other classes of domains in [Enciso et al., Trans. Am. Math. Soc. 377, 4519–4540 (2024)].

1.
S.
Candelaresi
and
F.
Del Sordo
, “
Stability of plasmas through magnetic helicity
,” in
Helicities in Geophysics, Astrophysics and Beyond
, edited byK. Kuzanyan, N. Yokoi, M. K. Georgoulis, and R. Stepanov (
AGU
,
2023
), Chap. 12.
2.
L.
Woltjer
, “
A theorem on force-free magnetic fields
,”
Proc. Natl. Acad. Sci. U. S. A.
44
,
489
491
(
1958
).
3.
K.
Moffatt
, “
The degree of knottedness of tangled vortex lines
,”
J. Fluid Mech.
35
,
117
129
(
1969
).
4.
V. I.
Arnold
, “
The asymptotic Hopf invariant and its applications
,” in
Arnold - Collected Works: Hydrodynamics, Bifurcation Theory, and Algebraic Geometry 1965-1972
, edited by
A. B.
Givental
,
B. A.
Khesin
,
A. N.
Varchenko
,
V. A.
Vassiliev
,
O. Y.
Viro
, and
I.
Vladimir
(
Springer
,
Berlin, Heidelberg
,
2014
), pp.
357
375
.
5.
T.
Vogel
, “
On the asymptotic linking number
,”
Proc. Am. Math. Soc.
131
,
2289
2297
(
2002
).
6.
V. I.
Arnold
and
B. A.
Khesin
,
Topological Methods in Hydrodynamics
(
Springer Verlag
,
1998
).
7.
H.
Alfvén
, “
On the existence of electromagnetic-hydrodynamic waves
,”
Ark. Mat., Astron. Fysik
29B
(
2
),
1
7
(
1942
).
8.
T.
Li
,
E.
Priest
, and
R.
Guo
, “
Three-dimensional magnetic reconnection in astrophysical plasmas
,”
Proc. R. Soc. A
477
,
20200949
(
2021
).
9.
D.
Biskamp
, “
Magnetic reconnection in plasmas
,”
Astrophys. Space Sci.
242
,
165
207
(
1996
).
10.
A.
Enciso
,
R.
Lucà
, and
D.
Peralta-Salas
, “
Vortex reconnection in the three dimensional Navier-Stokes equations
,”
Adv. Math.
309
,
452
486
(
2017
).
11.
J.
Cantarella
,
D.
DeTurck
,
H.
Gluck
, and
M.
Teytel
, “
Isoperimetric problems for the helicity of vector fields and the Biot-Savart and curl operators
,”
J. Math. Phys.
41
,
5615
5641
(
2000
).
12.
W.
Gerner
, “
Existence and characterisation of magnetic energy minimisers on oriented, compact Riemannian 3-manifolds with boundary in arbitrary helicity classes
,”
Ann. Global Anal. Geom.
58
,
267
285
(
2020
).
13.
A.
Enciso
,
D.
Peralta-Salas
, and
F. T.
de Lizaur
, “
Helicity is the only integral invariant of volume-preserving transformations
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
8
),
2035
2040
(
2016
).
14.
E. A.
Kudryavtseva
, “
Helicity is the only invariant of incompressible flows whose derivative is continuous in the C1 topology
,”
Math. Notes
99
,
611
615
(
2016
).
15.
B.
Khesin
,
D.
Peralta-Salas
, and
C.
Yang
, “
A basis of casimirs in 3D magnetohydrodynamics
,”
Int. Math. Res. Not.
2021
,
13645
13660
(
2020
).
16.
J.
Cantarella
,
D.
DeTurck
, and
H.
Gluck
, “
Upper bounds for the writhing of knots and the helicity of vector fields
,” in
Proceedings of the Conference in Honor of the 70th Birthday of Joan Birman, AMS/IP Series on Advanced Mathematics
, edited by
J.
Gilman
,
X.-S.
Lin
and
W.
Menasco
(
International Press
,
2000
).
17.
B.-Z.
Guo
and
D.-H.
Yang
, “
Some compact classes of open sets under Hausdorff distance and application to shape optimization
,”
SIAM J. Control Optim.
50
(
1
),
222
242
(
2012
).
18.
J.
Cantarella
,
D.
DeTurck
, and
H.
Gluck
, “
Vector calculus and the topology of domains in 3-space
,”
Am. Math. Mon.
109
(
5
),
409
442
(
2002
).
19.
W.
Gerner
, “
Minimisation problems in ideal magnetohydrodynamics
,” Ph.D thesis,
RWTH Aachen University
,
2020
.
20.
Z.
Yoshida
and
Y.
Giga
, “
Remarks on spectra of operator rot
,”
Math. Z.
204
(
1
),
235
245
(
1990
).
21.
J. W. S.
Rayleigh
,
The Theory of Sound
, 2nd ed. (
Macmillan
,
London
,
1894/1896
).
22.
J. W. S.
Rayleigh
,
The Theory of Sound
(
Dover Books on Physics
,
1945
), reprint edition.
23.
G.
Faber
, “
Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt
,”
Sitzungsber. Math.-Phys. Kl. Bayer. Akad. Wiss. München
1923
(
8
),
169
172
.
24.
E.
Krahn
, “
Über eine von Rayleigh formulierte Minimaleigenschaften des Kreises
,”
Math. Ann.
94
,
97
100
(
1925
)
25.
A.
Enciso
and
D.
Peralta-Salas
, “
Non-existence of axisymmetric optimal domains with smooth boundary for the first curl eigenvalue
,”
Ann. Sc. Norm. Sup. Pisa Cl. Sci.
XXIV
,
311
327
(
2021
).
26.
W.
Gerner
, “
Isoperimetric problem for the first curl eigenvalue
,”
J. Math. Anal. Appl.
519
,
126808
(
2023
).
27.
A.
Enciso
,
W.
Gerner
, and
D.
Peralta-Salas
, “
Optimal convex domains for the first curl eigenvalue in dimension three
,”
Trans. Am. Math. Soc.
377
,
4519
4540
(
2024
).
28.
G.
Schwarz
,
Hodge Decomposition—A Method for Solving Boundary Value Problems
(
Springer Verlag
,
1995
).
29.
A.
Alonso-Rodríguez
,
J.
Camaño
,
R.
Rodríguez
,
A.
Valli
, and
P.
Venegas
, “
Finite element approximation of the spectrum of the curl operator in a multiply connected domain
,”
Found. Comput. Math.
18
,
1493
1533
(
2018
).
30.
M. C.
Delfour
and
J.-P.
Zolésio
,
Shapes and Geometries
, 2nd ed. (
SIAM
,
2011
).
31.
J.
Cantarella
,
D.
DeTurck
, and
H.
Gluck
, “
The Biot–Savart operator for application to knot theory, fluid dynamics, and plasma physics
,”
J. Math. Phys.
42
(
2
),
876
905
(
2001
).
You do not currently have access to this content.