Quantum symmetry of graph C*-algebras has been studied, under the consideration of different formulations, in the past few years. It is already known that the compact quantum group (C(S1)C(S1)C(S1)|E(Γ)|times,Δ) [in short, *|E(Γ)|C(S1),Δ] always acts on a graph C*-algebra for a finite, connected, directed graph Γ in the category introduced by Joardar and Mandal, where |E(Γ)| ≔ number of edges in Γ. In this article, we show that for a certain class of graphs including Toeplitz algebra, quantum odd sphere, matrix algebra etc. the quantum symmetry of their associated graph C*-algebras remains *|E(Γ)|C(S1),Δ in the category as mentioned before. More precisely, if a finite, connected, directed graph Γ satisfies the following graph theoretic properties: (i) there does not exist any cycle of length ≥2 (ii) there exists a path of length (|V(Γ)| − 1) which consists all the vertices, where |V(Γ)| ≔ number of vertices in Γ (iii) given any two vertices (may not be distinct) there exists at most one edge joining them, then the universal object coincides with *|E(Γ)|C(S1),Δ. Furthermore, we have pointed out a few counter examples whenever the above assumptions are violated.

1.
Banica
,
T.
, “
Quantum automorphism groups of homogeneous graphs
,”
J. Funct. Anal.
224
,
243
280
(
2005
).
2.
Banica
,
T.
,
Bichon
,
J.
, and
Collins
,
B.
, “
Quantum permutation groups: A survey
,” in
Noncommutative Harmonic Analysis with Applications to Probability
(
Banach Center Publ., Polish Acad. Scientific Institute Math.
,
Warsaw
,
2007
), Vol.
78
, pp.
13
34
.
3.
Banica
,
T.
and
Skalski
,
A.
, “
Quantum symmetry groups of C*-algebras equipped with orthogonal filtration
,”
Proc. London Math. Soc.
106
(
5
),
980
1004
(
2013
).
4.
Bates
,
T.
,
Pask
,
D.
,
Raeburn
,
I.
, and
Szymanski
,
W.
, “
The C*-algebras of row-finite graphs
,”
New York J. Math.
6
,
307
324
(
2000
).
5.
Bates
,
T.
,
Hong
,
J. H.
,
Raeburn
,
I.
, and
Szymanski
,
W.
, “
The ideal structure of the C*-algebras of infinite graphs
,”
Illinois J. Math.
46
,
1159
1176
(
2002
).
6.
Bichon
,
J.
, “
Quantum automorphism groups of finite graphs
,”
Proc. Am. Math. Soc.
131
(
3
),
665
673
(
2002
).
7.
Connes
,
A.
,
Noncommutative Geometry
(
Academic Press
,
1994
).
8.
Cuntz
,
J.
, “
Simple C*-algebra generated by isometries
,”
Commun. Math. Phys.
57
(
2
),
173
185
(
1977
).
9.
Cuntz
,
J.
and
Krieger
,
W.
, “
A class of C*-algebras and topological Markov chains
,”
Invent. Math.
56
,
251
268
(
1980
).
10.
Goswami
,
D.
, “
Quantum group of isometries in classical and noncommutative geometry
,”
Commun. Math. Phys.
285
(
1
),
141
160
(
2009
).
11.
Hong
,
J. H.
and
Szymanski
,
W.
, “
Quantum spheres and projective spaces as graph algebras
,”
Commun. Math. Phys.
232
,
157
188
(
2002
).
12.
Hong
,
J. H.
and
Szymanski
,
W.
, “
Noncommutative balls and mirror quantum spheres
,”
J. London Math. Soc.
77
(
3
),
607
626
(
2008
).
13.
Huef
,
A.
,
Laca
,
M.
,
Raeburn
,
I.
, and
Sims
,
A.
, “
KMS states on the C*-algebras of finite graphs
,”
J. Math. Anal. Appl.
405
(
2
),
388
399
(
2013
).
14.
Joardar
,
S.
and
Mandal
,
A.
, “
Quantum symmetry of graph C*-algebras associated with connected graphs
,”
Infinite Dimens. Anal., Quantum Probab. Relat. Top.
21
(
03
),
1850019
(
2018
).
15.
Joardar
,
S.
and
Mandal
,
A.
, “
Quantum symmetry of graph C*-algebras at critical inverse temperature
,”
Studia Math.
256
(
1
),
1
20
(
2021
).
16.
Kumjian
,
A.
,
Pask
,
D.
, and
Raeburn
,
I.
, and
Renault
,
J.
, “
Graphs, groupoids, and Cuntz–Krieger algebras
,”
J. Funct. Anal.
144
(
2
),
505
541
(
1997
).
17.
Kumjian
,
A.
,
Pask
,
D.
, and
Raeburn
,
I.
, “
Cuntz-Krieger algebras of directed graphs
,”
Pacific J. Math.
184
(
1
),
161
174
(
1998
).
18.
Maes
,
A.
and
Van Daele
,
A.
, “
Notes on compact quantum groups
,”
Nieuw Arch. Wisk. (4)
16
(
1-2
),
73
112
(
1998
).
19.
Matthes
,
R.
and
Szymański
,
W.
, Graph C*-algebras (Notes Taken by P.Witkowski),
2005
; https://www.impan.pl/swiat-matematyki/notatki-z-wyklado∼/rainer_kgca.pdf.
20.
Neshveyev
,
S.
and
Tuset
,
L.
,
Compact Quantum Groups and Their Representation Categories
(
Société Mathmétique de France
,
Paris
,
2013
).
21.
Pask
,
D.
and
Rennie
,
A.
, “
The noncommutative geometry of graph C*-algebras I: Index theorem
,”
J. Funct. Anal.
233
,
92
134
(
2006
).
22.
Raeburn
,
I.
,
Graph Algebras
,
CBMS Regional Conference Series in Mathematics
(
Published for the Conference Board of the Mathematical Sciences
,
Washington, DC
, 2005), Vol.
103
.
23.
Schmidt
,
S.
and
Weber
,
M.
, “
Quantum symmetries of graph C*-algebras
,”
Can. Math. Bull.
61
(
4
),
848
864
(
2018
).
24.
Skalski
,
A.
and
Sołtan
,
P. M.
, “
Projective limits of quantum symmetry groups and the doubling construction for Hopf algebras
,”
Infinite Dimens. Anal., Quantum Probab. Relat. Top.
17
(
2
),
1450012
(
2014
).
25.
Tarrago
,
P.
and
Weber
,
M.
, “
Unitary easy quantum groups: The free case and the group case
,”
Int. Math. Res. Not.
217
(
18
),
5710
5750
(
2017
).
26.
Timmermann
,
T.
, “
An invitation to quantum groups and duality
,” in
EMS Textbooks in Mathematics
(
European Mathematical Society (EMS)
,
Zürich
,
2008
).
27.
Wang
,
S.
, “
Free products of compact quantum groups
,”
Commun. Math. Phys.
167
,
671
692
(
1995
).
28.
Wang
,
S.
, “
Quantum symmetry groups of finite spaces
,”
Commun. Math. Phys.
195
,
195
211
(
1998
).
29.
Woronowicz
,
S. L.
, “
Compact matrix pseudogroups
,”
Commun. Math. Phys.
111
,
613
665
(
1987
).
You do not currently have access to this content.