As an extension to the paper by Breuer et al., Ann. Henri Poincare 22, 3763 (2021), we study the linear statistics for the eigenvalues of the Schrödinger operator with random decaying potential with order O(xα) (α > 0) at infinity. We first prove similar statements as in Breuer et al., Ann. Henri Poincare 22, 3763 (2021) for the trace of f(H), where f belongs to a class of analytic functions: there exists a critical exponent αc such that the fluctuation of the trace of f(H) converges in probability for α > αc, and satisfies a central limit theorem statement for ααc, where αc differs depending on f. Furthermore we study the asymptotic behavior of its expectation value.

1.
Billingsley
,
P.
,
Probability and Measure
, 3rd ed.,
Wiley Series in Probability and Mathematical Statistics
(
A Wiley-Interscience Publisher
,
1995
).
2.
Breuer
,
J.
,
Grinshpon
,
Y.
, and
White
,
M. J.
, “
Spectral fluctuations for Schrödinger operators with a random decaying potential
,”
Ann. Henri Poincare
22
,
3763
3794
(
2021
).
3.
Delyon
,
F.
,
Simon
,
B.
, and
Souillard
,
B.
, “
From power pure point to continuous spectrum in disordered systems
,”
Ann. Henri Poincare
42
,
283
309
(
1985
).
4.
Dumitriu
,
I.
and
Edelman
,
A.
, “
Matrix models for beta ensembles
,”
J. Math. Phys.
43
,
5830
5847
(
2002
).
5.
Durrett
,
R.
,
Probability: Theory and Examples
, 5th ed.,
Cambridge Series in Statistical and Probabilistic Mathematics
(
Cambridge University Press
,
2019
).
6.
Kiselev
,
A.
,
Last
,
Y.
, and
Simon
,
B.
, “
Modified prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators
,”
Commun. Math. Phys.
194
,
1
45
(
1998
).
7.
Kotani
,
S.
and
Nakano
,
F.
, “
Level statistics for the one-dimensional Schroedinger operators with random decaying potential
,”
Interdiscip. Math. Sci.
17
,
343
373
(
2014
).
8.
Kotani
,
S.
and
Nakano
,
F.
, “
Poisson statistics for 1d Schrödinger operators with random decaying potentials
,”
Electron. J. Probab.
22
,
1
31
(
2017
).
9.
Kritchevski
,
E.
,
Valkó
,
B.
, and
Virág
,
B.
, “
The scaling limit of the critical one-dimensional random Schrödinger operator
,”
Commun. Math. Phys.
314
,
775
806
(
2012
).
10.
Nakano
,
F.
, “
Level statistics for one-dimensional Schrödinger operators and Gaussian beta ensemble
,”
J. Stat. Phys.
156
,
66
93
(
2014
).
11.
Nakano
,
F.
, “
Fluctuation of density of states for 1d Schrödinger operators
,”
J. Stat. Phys.
166
,
1393
1404
(
2017
).
12.
Nakano
,
F.
, “
Shape of eigenvectors for the decaying potential model
,”
Ann. Henri Poincaré.
24
,
871
893
(
2023
); arXiv:2203.03125.
13.
Rifkind
,
B.
and
Virág
,
B.
, “
Eigenvectors of the 1-dimensional critical random Schrödinger operator
,”
Geom. Funct. Anal.
28
,
1394
1419
(
2018
).
You do not currently have access to this content.