We study the stability problem of steady solutions to the semi-stationary Boussinesq equations in the strip domain R2×(0,1). For an equilibrium state with any general steady solution θe which satisfies ϑe > m > 0, we show the global existence and asymptotic behavior of solutions to the system with the no-slip boundary condition when the initial temperature is close enough to it. Thus such a steady solution is asymptotically stable, which reflects the well-known phenomenon of Rayleigh-Taylor stability.

1.
Adams
,
R.
and
Fournier
,
J.
,
Sobolev Spaces
, 2nd ed.,
Pure and Applied Mathematics Vol. 140
(
Elsevier/Academic Press
,
Amsterdam
,
2003
).
2.
Antoine
,
L.
, “
Well-posedness of the Stokes-transport system in bounded domains and in the infinite strip
,”
J. Math. Pures Appl.
158
,
120
143
(
2022
).
3.
Anne-Laure
,
D.
,
Guillod
,
J.
, and
Leblond
,
A.
, “
Long-time behavior of the Stokes-transport system in a channel
,” arXiv:2306.00780 (
2023
).
4.
Antontsev
,
S. N.
,
Kazhikhov
,
A. V.
, and
Monakhov
,
V. N.
,
Boundary Value Problems in Mechanics of Nonhomogeneous Fluids
(
North-Holland Publishing Co.
,
1990
).
5.
Bianchini
,
R.
and
Natalini
,
R.
, “
Asymptotic behavior of 2D stably stratified fluids with a damping term in the velocity equation
,”
ESAIM: Control, Optim. Calculus Var.
27
,
43
(
2021
).
6.
Castro
,
Á.
,
Córdoba
,
D.
, and
Lear
,
D.
, “
On the asymptotic stability of stratified solutions for the 2D Boussinesq equations with a velocity damping term
,”
Math. Models Methods Appl. Sci.
29
(
7
),
1227
1277
(
2019
).
7.
Choe
,
H. J.
and
Kim
,
H.
, “
Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids
,”
Commun. Partial Differ. Equations
28
(
5–6
),
1183
1201
(
2003
).
8.
Doering
,
C. R.
,
Wu
,
J.
,
Zhao
,
K.
, and
Zheng
,
X.
, “
Long-time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion
,”
Physica D
376–377
,
144
159
(
2018
).
9.
Dong
,
L.
and
Sun
,
Y.
, “
Asymptotic stability of the 2D Boussinesq equations without thermal conduction
,”
J. Differ. Equations
337
,
507
540
(
2022
).
10.
Dong
,
L.
and
Sun
,
Y.
, “
On asymptotic stability of the 3D Boussinesq equations without thermal conduction
,”
Sci. China Math.
67
,
253
(
2024
).
11.
Elgindi
,
T. M.
, “
On the asymptotic stability of stationary solutions of the inviscid incompressible porous medium equation
,”
Arch. Ration. Mech. Anal.
225
,
573
599
(
2017
).
12.
Galdi
,
G.
,
An Introduction to the Mathematical Theory of the Navier-Stokes Equations
(
Springer
,
New York
,
2011
).
13.
Guo
,
Y.
and
Tice
,
I.
, “
Decay of viscous surface waves without surface tension in horizontally infinite domains
,”
Anal. PDE
6
(
6
),
1429
1533
(
2013
).
14.
Jiang
,
F.
,
Jiang
,
S.
, and
Ni
,
G.
, “
Nonlinear instability for nonhomogeneous incompressible viscous fluids
,”
Sci. China Math.
56
,
665
686
(
2013
).
15.
Jiang
,
F.
and
Jiang
,
S.
, “
On instability and stability of three-dimensional gravity driven viscous flows in a bounded domain
,”
Adv. Math.
264
,
831
863
(
2014
).
16.
Lions
,
P. L.
,
Mathematical Topics in Fluid Mechanics. Volume 1. Incompressible Models
,
Oxford Lecture Series in Mathematics and its Applications Vol. 3
(
Clarendon Press
,
Oxford
,
1996
).
17.
Marco
,
I.
, “
Lagrangian solutions to the transport–Stokes system
,”
Nonlinear Anal.
235
,
113333
(
2023
).
18.
Mecherbet
,
A.
and
Sueur
,
F.
, “
A few remarks on the transport-Stokes system
,” arXiv:2209.11637 (
2022
).
19.
Mecherbet
,
A.
, “
Sedimentation of particles in Stokes flow
,”
Kinet. Relat. Models
12
(
5
),
995
1044
(
2019
).
20.
Mecherbet
,
A.
, “
On the sedimentation of a droplet in Stokes flow
,”
Commun. Math. Sci.
19
(
6
),
1627
1654
(
2021
).
21.
Hörmander
,
L.
,
The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators
(
Springer
,
2007
).
22.
Höfer
,
R. M.
, “
Sedimentation of inertialess particles in Stokes flows
,”
Commun. Math. Phys.
360
,
55
101
(
2018
).
23.
Ren
,
X.
,
Xiang
,
Z.
, and
Zhang
,
Z.
, “
Global existence and decay of smooth solutions for the 3-D MHD-type equations without magnetic diffusion
,”
Sci. China Math.
59
(
10
),
1949
1974
(
2016
).
24.
Stein
,
E. M.
,
Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals
,
Princeton Mathematical Series Vol. 43. Monographs in Harmonic Analysis, III
(
Princeton University Press
,
Princeton, NJ
,
1993
).
25.
Tao
,
L.
,
Wu
,
J.
,
Zhao
,
K.
, and
Zheng
,
X.
, “
Stability near hydrostatic equilibrium to the 2D Boussinesq equations without thermal diffusion
,”
Arch. Ration. Mech. Anal.
237
(
2
),
585
630
(
2020
).
26.
Wan
,
R.
, “
Global well-posedness for the 2D Boussinesq equations with a velocity damping term
,”
Discrete Contin. Dyn. Syst. A
39
(
5
),
2709
2730
(
2019
).
You do not currently have access to this content.