We study the stability problem of steady solutions to the semi-stationary Boussinesq equations in the strip domain . For an equilibrium state with any general steady solution θe which satisfies ϑe > m > 0, we show the global existence and asymptotic behavior of solutions to the system with the no-slip boundary condition when the initial temperature is close enough to it. Thus such a steady solution is asymptotically stable, which reflects the well-known phenomenon of Rayleigh-Taylor stability.
REFERENCES
1.
Adams
, R.
and Fournier
, J.
, Sobolev Spaces
, 2nd ed., Pure and Applied Mathematics Vol. 140
(Elsevier/Academic Press
, Amsterdam
, 2003
).2.
Antoine
, L.
, “Well-posedness of the Stokes-transport system in bounded domains and in the infinite strip
,” J. Math. Pures Appl.
158
, 120
–143
(2022
).3.
Anne-Laure
, D.
, Guillod
, J.
, and Leblond
, A.
, “Long-time behavior of the Stokes-transport system in a channel
,” arXiv:2306.00780 (2023
).4.
Antontsev
, S. N.
, Kazhikhov
, A. V.
, and Monakhov
, V. N.
, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids
(North-Holland Publishing Co.
, 1990
).5.
Bianchini
, R.
and Natalini
, R.
, “Asymptotic behavior of 2D stably stratified fluids with a damping term in the velocity equation
,” ESAIM: Control, Optim. Calculus Var.
27
, 43
(2021
).6.
Castro
, Á.
, Córdoba
, D.
, and Lear
, D.
, “On the asymptotic stability of stratified solutions for the 2D Boussinesq equations with a velocity damping term
,” Math. Models Methods Appl. Sci.
29
(7
), 1227
–1277
(2019
).7.
Choe
, H. J.
and Kim
, H.
, “Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids
,” Commun. Partial Differ. Equations
28
(5–6
), 1183
–1201
(2003
).8.
Doering
, C. R.
, Wu
, J.
, Zhao
, K.
, and Zheng
, X.
, “Long-time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion
,” Physica D
376–377
, 144
–159
(2018
).9.
Dong
, L.
and Sun
, Y.
, “Asymptotic stability of the 2D Boussinesq equations without thermal conduction
,” J. Differ. Equations
337
, 507
–540
(2022
).10.
Dong
, L.
and Sun
, Y.
, “On asymptotic stability of the 3D Boussinesq equations without thermal conduction
,” Sci. China Math.
67
, 253
(2024
).11.
Elgindi
, T. M.
, “On the asymptotic stability of stationary solutions of the inviscid incompressible porous medium equation
,” Arch. Ration. Mech. Anal.
225
, 573
–599
(2017
).12.
Galdi
, G.
, An Introduction to the Mathematical Theory of the Navier-Stokes Equations
(Springer
, New York
, 2011
).13.
Guo
, Y.
and Tice
, I.
, “Decay of viscous surface waves without surface tension in horizontally infinite domains
,” Anal. PDE
6
(6
), 1429
–1533
(2013
).14.
Jiang
, F.
, Jiang
, S.
, and Ni
, G.
, “Nonlinear instability for nonhomogeneous incompressible viscous fluids
,” Sci. China Math.
56
, 665
–686
(2013
).15.
Jiang
, F.
and Jiang
, S.
, “On instability and stability of three-dimensional gravity driven viscous flows in a bounded domain
,” Adv. Math.
264
, 831
–863
(2014
).16.
Lions
, P. L.
, Mathematical Topics in Fluid Mechanics. Volume 1. Incompressible Models
, Oxford Lecture Series in Mathematics and its Applications Vol. 3
(Clarendon Press
, Oxford
, 1996
).17.
Marco
, I.
, “Lagrangian solutions to the transport–Stokes system
,” Nonlinear Anal.
235
, 113333
(2023
).18.
Mecherbet
, A.
and Sueur
, F.
, “A few remarks on the transport-Stokes system
,” arXiv:2209.11637 (2022
).19.
Mecherbet
, A.
, “Sedimentation of particles in Stokes flow
,” Kinet. Relat. Models
12
(5
), 995
–1044
(2019
).20.
Mecherbet
, A.
, “On the sedimentation of a droplet in Stokes flow
,” Commun. Math. Sci.
19
(6
), 1627
–1654
(2021
).21.
Hörmander
, L.
, The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators
(Springer
, 2007
).22.
Höfer
, R. M.
, “Sedimentation of inertialess particles in Stokes flows
,” Commun. Math. Phys.
360
, 55
–101
(2018
).23.
Ren
, X.
, Xiang
, Z.
, and Zhang
, Z.
, “Global existence and decay of smooth solutions for the 3-D MHD-type equations without magnetic diffusion
,” Sci. China Math.
59
(10
), 1949
–1974
(2016
).24.
Stein
, E. M.
, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals
, Princeton Mathematical Series Vol. 43. Monographs in Harmonic Analysis, III
(Princeton University Press
, Princeton, NJ
, 1993
).25.
Tao
, L.
, Wu
, J.
, Zhao
, K.
, and Zheng
, X.
, “Stability near hydrostatic equilibrium to the 2D Boussinesq equations without thermal diffusion
,” Arch. Ration. Mech. Anal.
237
(2
), 585
–630
(2020
).26.
Wan
, R.
, “Global well-posedness for the 2D Boussinesq equations with a velocity damping term
,” Discrete Contin. Dyn. Syst. A
39
(5
), 2709
–2730
(2019
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.