In this paper, we establish new regularity criteria for the three-dimensional (3D) viscous incompressible magnetohydrodynamic (MHD) equations. It is proved that if the solution of the MHD equations satisfies u3Lp(0,T;Lq(R3)),j3Lr(0,T;Ls(R3)),2p+3q=1324,7213q;2r+3s=2,32<s or u3Lp(0,T;Lq(R3)),w3Lr(0,T;Ls(R3)),2p+3q=1324,7213q;2r+3s=2,32<s, then the regularity of the solution on (0, T), where u3, j3 and ω3 are the third component of velocity u, current density ∇ × b and vorticity ∇ × u, respectively. These results give new improvements of regularity theory of weak solutions.

1.
Beirão da Veiga
,
H.
, “
A new regularity class for the Navier-Stokes equations in Rn
,”
Chin. Ann. Math. Ser. B
16
,
407
412
(
1995
), see https://camath.fudan.edu.cn/cambcn/ch/reader/create_pdf.aspx?file_no=16B401&flag=1.
2.
Cao
,
C.
,
Qin
,
J.
, and
Titi
,
E. S.
, “
Regularity criterion for solutions of three-dimensional turbulent channel flows
,”
Commun. Partial Differ. Equations
33
(
3
),
419
428
(
2008
).
3.
Cao
,
C.
and
Titi
,
E. S.
, “
Regularity criteria for the three-dimensional Navier–Stokes equations
,”
Indiana Univ. Math. J.
57
,
2643
2661
(
2008
).
4.
Cao
,
C.
and
Titi
,
E. S.
, “
Global regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor
,”
Arch. Ration. Mech. Anal.
202
(
3
),
919
932
(
2011
).
5.
Duvaut
,
G.
and
Lions
,
J. L.
, “
Inéquations en thermoélasticité et magnétohydrodynamique
,”
Arch. Ration. Mech. Anal.
46
,
241
279
(
1972
).
6.
Escauriaza
,
L.
,
Seregin
,
G.
, and
Šverák
,
V.
, “
Backward uniqueness for parabolic equations
,”
Arch. Ration. Mech. Anal.
169
,
147
157
(
2003
).
7.
Guo
,
Z.
,
Li
,
Y.
, and
Skalák
,
Z.
, “
On conditional regularity for the MHD equations via partial components
,”
J. Math. Fluid Mech.
23
(
3
),
51
(
2021
).
8.
He
,
C.
and
Xin
,
Z.
, “
Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations
,”
J. Funct. Anal.
227
,
113
152
(
2005
).
9.
Hopf
,
E.
, “
Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet
,”
Math. Nachr.
4
,
213
231
(
1950
).
10.
Jia
,
X.
and
Zhou
,
Y.
, “
On regularity criteria for the 3D incompressible MHD equations involving one velocity component
,”
J. Math. Fluid Mech.
18
,
187
206
(
2016
).
11.
Kukavica
,
I.
and
Ziane
,
M.
, “
One component regularity for the Navier–Stokes equations
,”
Nonlinearity
19
,
453
469
(
2006
).
12.
Leray
,
J.
, “
Sur le mouvement d’un liquide visqueux emplissant l’espace
,”
Acta Math.
63
,
193
248
(
1934
).
13.
Neustupa
,
J.
and
Penel
,
P.
, “
Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component
,” in
Applied Nonlinear Analysis
, edited by
A.
Sequeira
,
H. B.
da Veiga
, and
J. H.
Videman
(
Springer, Boston, MA
,
2002
), pp.
391
402
.
14.
Prodi
,
G.
, “
Un teorema di unicità per le equazioni di Navier-Stokes
,”
Ann. Mat. Pura Appl.
48
,
173
182
(
1959
).
15.
Robinson
,
J. C.
,
Rodrigo
,
J. L.
, and
Sadowski
,
W.
,
The Three-Dimensional Navier-Stokes Equations: Classical Theory
,
Cambridge Studies in Advanced Mathematics Vol. 157
(
Cambridge University Press
,
Cambridge
,
2016
).
16.
Sermange
,
M.
and
Temam
,
R.
, “
Some mathematical questions related to the MHD equations
,”
Commun. Pure Appl. Math.
36
,
635
664
(
1983
).
17.
Serrin
,
J.
, “
On the interior regularity of weak solutions of the Navier–Stokes equations
,”
Arch. Ration. Mech. Anal.
9
,
187
195
(
1962
).
18.
Yamazaki
,
K.
, “
Regularity criteria of MHD system involving one velocity and one current density component
,”
J. Math. Fluid Mech.
16
,
551
570
(
2014
).
19.
Yamazaki
,
K.
, “
Remarks on the regularity criteria of three-dimensional magnetohydrodynamics system in terms of two velocity field components
,”
J. Math. Phys.
55
,
031505
(
2014
).
20.
Yamazaki
,
K.
, “
Regularity criteria of the three-dimensional MHD system involving one velocity and one vorticity component
,”
Nonlinear Anal.: Theory, Methods Appl.
135
,
73
83
(
2016
).
21.
Yamazaki
,
K.
, “
On the three-dimensional magnetohydrodynamics system in scaling-invariant spaces
,”
Bull. Sci. Math.
140
,
575
614
(
2016
).
22.
Zhang
,
Z.
, “
Remarks on the global regularity criteria for the 3D MHD equations via two components
,”
Z. Angew. Math. Phys.
66
,
977
987
(
2015
).
23.
Zhang
,
Z.
, “
Refined regularity criteria for the MHD system involving only two components of the solution
,”
Appl. Anal.
96
,
2130
2139
(
2017
).
24.
Zhang
,
Z.
and
Zhang
,
Y.
, “
An improved regularity criteria for the MHD system based on two components of the solution
,”
Appl. Math.
66
,
451
460
(
2021
).
25.
Zhou
,
Y.
, “
Remarks on regularities for the 3D MHD equations
,”
Discrete Contin. Dyn. Syst., A
12
,
881
886
(
2005
).
26.
Zhou
,
Y.
and
Pokorný
,
M.
, “
On the regularity of the solutions of the Navier–Stokes equations via one velocity component
,”
Nonlinearity
23
,
1097
1107
(
2010
).
You do not currently have access to this content.