We draw connections between contact topology and Maxwell fields in vacuo on three-dimensional closed Riemannian submanifolds in four-dimensional Lorentzian manifolds. This is accomplished by showing that contact topological methods can be applied to reveal topological features of a class of solutions to Maxwell’s equations. This class of Maxwell fields is such that electric fields are parallel to magnetic fields. In addition these electromagnetic fields are composed of the so-called Beltrami fields. We employ several theorems resolving the Weinstein conjecture on closed manifolds with contact structures and stable Hamiltonian structures, where this conjecture refers to the existence of periodic orbits of the Reeb vector fields. Here a contact form is a special case of a stable Hamiltonian structure. After showing how to relate Reeb vector fields with electromagnetic 1-forms, we apply a theorem regarding contact manifolds and an improved theorem regarding stable Hamiltonian structures. Then a closed field line is shown to exist, where field lines are generated by Maxwell fields. In addition, electromagnetic energies are shown to be conserved along the Reeb vector fields.

1.
Abraham
,
R.
,
Marsden
,
J. E.
, and
Ratiu
,
T.
,
Manifolds, Tensor Analysis, and Applications
(
Springer
,
1998
).
2.
Arrayás
,
M.
,
Bouwmeester
,
D.
, and
Trueba
,
J. L.
, “
Knots in electromagnetism
,”
Phys. Rep.
667
,
1
61
(
2017
).
3.
Benn
,
I.
and
Tucker
,
R.
,
An Introduction to Spinors and Geometry with Applications in Physics
(
Adam Hilger Ltd.
,
1987
).
4.
Bode
,
B.
, “
Stable knots and links in electromagnetic fields
,”
Commun. Math. Phys.
387
,
1757
1770
(
2021
).
5.
Burton
,
D. A.
and
Noble
,
A.
,
A Geometrical Approach to Physics
(
CRC Press
,
2024
).
6.
Cardona
,
R.
,
Midanda
,
E.
, and
Peltra-Salas
,
D.
, “
Euler flows and singular geometric structures
,”
Proc. R. Soc. London, Ser. A
377
,
20190034
(
2019
).
7.
Choquet-Bruhat
,
Y.
and
DeWitte-Morette
,
C.
,
Analysis, Manifolds and Physics Part I: Basics
, revised edition (
Elsevier
,
1982
).
8.
Cieliebak
,
K.
and
Volkov
,
E.
, “
First steps in stable Hamiltonian topology
,”
J. Eur. Math. Soc.
17
,
321
404
(
2015
).
9.
da Silva
,
A.
,
Lectures on Symplectic Geometry
(
Springer
,
2008
).
10.
Dahl
,
M. F.
, “
Contact geometry in electromagnetism
,”
Prog. Electromagn. Res.
46
,
77
104
(
2004
).
11.
Dahl
,
M. F.
, “
Electromagnetic fields from contact forms
,” arXiv:0811.2002v1 (
2008
).
12.
Dahl
,
M.
, “
Non-dissipative electromagnetic media with two Lorentz null cones
,”
Ann. Phys.
330
,
55
73
(
2013
).
13.
Dombre
,
T.
,
Frisch
,
U.
,
Greene
,
J.
,
Hénon
,
M.
,
Mehr
,
A.
, and
Soward
,
A. M.
, “
Chaotic streamlines in the ABC flows
,”
J. Fluid Mech.
167
,
353
391
(
1986
).
14.
Enciso
,
A.
and
Peralta-Salas
,
D.
, “
Nondegeneracy of the eigenvalues of the Hodge Laplacian for generic metrics on 3-manifolds
,”
Trans. Am. Math. Soc.
364
,
4207
4224
(
2012
).
15.
Enciso
,
A.
and
Peralta-Salas
,
D.
, “
Beltrami fields with a nonconstant proportionality factor are rare
,”
Arch. Ration. Mech. Anal.
220
,
243
260
(
2016
).
16.
Entov
,
M.
and
Polterovich
,
L.
, “
Contact topology and non-equilibrium thermodynamics
,”
Nonlinearity
36
,
3349
(
2023
).
17.
Etnyre
,
J.
and
Ghrist
,
R.
, “
Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture
,”
Nonlinearity
13
,
441
458
(
2000
).
18.
Frenkel
,
T.
,
The Geometry of Physics
, 3rd ed. (
Cambridge University Press
,
2011
).
19.
García-Peláez
,
D.
,
López-Monsalvo
,
C. S.
, and
Rubio Ponce
,
A.
, “
Light propagation through optical media using metric contact geometry
,”
J. Math. Phys.
63
,
073504
(
2022
).
20.
Giroux
,
E.
, “
Une structure de contact, même tendue, est plus ou moins tordue
,”
Ann. Sci. l’École Norm. Supér.
27
,
697
705
(
1994
).
21.
Goto
,
S.
and
Tucker
,
R. W.
, “
Electromagnetic fields produced by moving sources in a curved beam pipe
,”
J. Math. Phys.
50
,
063510
(
2009
).
22.
Gratus
,
J.
, “
A pictorial introduction to differential geometry, leading to Maxwell’s equations as three pictures
,” arXiv:1709.08492 (
2017
).
23.
Gratus
,
J.
,
McCall
,
M. W.
, and
Kinsler
,
P.
, “
Electromagnetism, axions, and topology: A first-order operator approach to constitutive responses provides greater freedom
,”
Phys. Rev. A
101
,
043804
(
2020
).
24.
Gromov
,
M.
, “
Pseudo holomorphic curves in symplectic manifolds
,”
Invent. Math.
82
,
307
347
(
1985
).
25.
Heal
,
F. W.
and
Obukhov
,
Y. N.
,
Foundations of Classical Electrodynamics
,
Progress in Mathematical Physics
(
Birkhäuser
,
Boston
,
2003
).
26.
Hofer
,
H.
and
Zehnder
,
E.
,
Symplectic Invariants and Hamiltonian Dynamics
(
Birkhäuser
,
1994
).
27.
Hutchings
,
M.
, “
Taubes’s proof of the Weinstein conjecture in dimension three
,”
Bull. Am. Math. Soc.
47
,
73
125
(
2009
).
28.
Hutchings
,
M.
and
Taubes
,
C. H.
, “
The Weinstein conjecture for stable Hamiltonian structures
,”
Geom. Topol.
13
,
901
941
(
2009
).
29.
Inoguchi
,
J. I.
and
Munteanu
,
M. I.
, “
Periodic magnetic curves in Berger spheres
,”
Tohoku Math. J.
69
,
113
128
(
2017
).
30.
Jackson
,
J. D.
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
1998
).
31.
Kanda
,
Y.
, “
The classification of tight contact structures on the 3-torus
,”
Commun. Anal. Geom.
5
,
413
438
(
1997
).
32.
Kitano
,
M.
, “
Reformulation of electromagnetism with differential forms
,” in
Trends in Electromagnetism: From Fundamentals to Applications
(
IntechOpen
,
2012
).
33.
Lakhtakia
,
A.
,
Beltrami Fields in Chiral Media
(
World Scientific
,
1994
).
34.
Landau
,
L. D.
and
Lifshitz
,
E. M.
,
The Classical Theory of Fields
, 3rd revised English edition (
Pergamon Press Ltd.
,
1971
).
35.
Lee
,
J. M.
,
Introduction to Smooth Manifolds
, 2nd ed. (
Springer
,
2012
).
36.
Martinet
,
J.
, “
Formes de contact sur les variétés de dimension 3
,” in
Proceedings of the Liverpool Singularities Symposium II (1969/1970)
,
Lecture Notes in Mathematics Vol. 209
(
Springer
,
Berlin
,
1971
), pp.
142
163
.
37.
McDuff
,
D.
and
Salamon
,
D.
,
Introduction to Symplectic Topology
, 3rd ed. (
Oxford University Press
,
2016
).
38.
Mochizuki
,
R.
,
Shinohara
,
N.
, and
Sanada
,
A.
, “
Zero poynting vector EH Beltrami field cylindrical cavity resonators
,”
AIP Adv.
12
,
075314
(
2022
).
39.
Moreno
,
A.
, “
Contact geometry in the restricted three-body problem: A survey
,”
J. Fixed Point Theory Appl.
24
,
29
(
2022
).
40.
Nakahara
,
M.
,
Geometry, Topology and Physics
, 2nd ed. (
Institute of Physics
,
2003
).
41.
Nakata
,
Y.
,
Urade
,
Y.
, and
Nakanishi
,
T.
, “
Geometric structure behind duality and manifestation of self-duality from electrical circuits to metamaterials
,”
Symmetry
11
,
1336
(
2019
).
42.
Peralta-Salas
,
D.
and
Slobodeanu
,
R.
, “
Contact structures and Beltrami fields on the torus and the sphere
,”
Indiana Univ. Math. J.
72
,
699
730
(
2023
).
43.
Taubes
,
C. H.
, “
The Seiberg–Witten equations and the Weinstein conjecture
,”
Geom. Topol.
11
,
2117
2202
(
2007
).
44.
Tucker
,
R. W.
, “
On the effects of geometry on guided electromagnetic waves
,”
Theor. Appl. Mech.
34
,
1
50
(
2007
).
45.
Tucker
,
R. W.
and
Walton
,
T. J.
, “
Scalar pre-potentials for spinor and tensor fields on spacetime
,”
J. Phys.: Conf. Ser.
2191
,
012020
(
2022
).
46.
Uehara
,
K.
,
Kawai
,
T.
, and
Shimoda
,
K.
, “
Non-transverse electromagnetic waves with parallel electric and magnetic fields
,”
J. Phys. Soc. Jpn.
58
,
3570
3575
(
1989
).
47.
Weinstein
,
A.
, “
On the hypotheses of Rabinowitz’ periodic orbit theorems
,”
J. Differ. Equations
33
,
353
358
(
1979
).
You do not currently have access to this content.