We study some notions of cohomology for asymptotically additive sequences and prove a Livšic-type result for almost additive sequences of potentials. As a consequence, we are able to characterize almost additive sequences based on their equilibrium measures and also show how to obtain almost (and asymptotically) additive sequences of Hölder continuous functions satisfying the bounded variation condition (with a unique equilibrium measure) and which are not physically equivalent to any additive sequence generated by a Hölder continuous function. Moreover, we also use our main result to suggest a classification of almost additive sequences based on physical equivalence relations with respect to the classical additive setup.

1.
D.-J.
Feng
and
W.
Huang
, “
Lyapunov spectrum of asymptotically sub-additive potentials
,”
Commun. Math. Phys.
297
,
1
43
(
2010
).
2.
N.
Cuneo
, “
Additive, almost additive and asymptotically additive potential sequences are equivalent
,”
Commun. Math. Phys.
377
,
2579
2595
(
2020
).
3.
D.
Ruelle
,
Thermodynamic Formalism
,
Encyclopedia of Mathematics and its Applications
(
Addison-Wesley
,
1978
), Vol.
5
.
4.
A. C. D.
van Enter
,
R.
Fernández
, and
A. D.
Sokal
, “
Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory
,”
J. Stat. Phys.
72
,
879
1167
(
1993
).
5.
A.
Lopes
,
S.
Lopes
, and
P.
Varandas
, “
Bayes posterior convergence for loss functions via almost additive thermodynamic formalism
,”
J. Stat. Phys.
186
,
35
(
2022
).
6.
L.
Barreira
, “
Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures
,”
Discrete Contin. Dyn. Syst. A
16
,
279
305
(
2006
).
7.
R.
Bowen
, “
Some systems with unique equilibrium states
,”
Math. Syst. Theory
8
,
193
202
(
1974/75
).
8.
A.
Mummert
, “
The thermodynamic formalism for almost-additive sequences
,”
Discrete Contin. Dyn. Syst. A
16
,
435
454
(
2006
).
9.
J.
Barral
and
M.
Mensi
, “
Gibbs measures on self-affine Sierpinski carpets and their singularity spectrum
,”
Ergod. Theory Dyn. Syst.
27
,
1419
1443
(
2007
).
10.
J.
Bochi
, “
Ergodic optimization of Birkhoff averages and Lyapunov exponents
,” in
International Congress of Mathematicians (ICM 2018)
(
World Scientific
,
2019
), pp.
1825
1846
.
11.
J.
Bochi
and
M.
Rams
, “
The entropy of Lyapunov-optimizing measures of some matrix cocycles
,”
J. Mod. Dyn.
10
,
255
286
(
2016
).
12.
T.
Bomfim
,
R.
Huo
,
P.
Varandas
, and
Y.
Zhao
, “
Typical properties of ergodic optimization for asymptotically additive potentials
,”
Stoch. Dyn.
23
,
2250024
(
2023
).
13.
J.-R.
Chazottes
and
M.
Hochman
, “
On the zero-temperature limit of Gibbs states
,”
Commun. Math. Phys.
297
,
265
281
(
2010
).
14.
G.
Contreras
, “
Ground states are generically a periodic orbit
,”
Invent. Math.
205
,
383
412
(
2016
).
15.
G.
Contreras
,
A. O.
Lopes
, and
P.
Thieullen
, “
Lyapunov minimizing measures for expanding maps of the circle
,”
Ergod. Theory Dyn. Syst.
21
,
1379
1409
(
2001
).
16.
O.
Jenkinson
, “
Ergodic optimization
,”
Discrete Contin. Dyn. Syst. A
15
,
197
224
(
2006
).
17.
O.
Jenkinson
, “
Ergodic optimization in dynamical systems
,”
Ergod. Theory Dyn. Syst.
39
,
2593
2618
(
2019
).
18.
O.
Jenkinson
and
M.
Pollicott
, “
Joint spectral radius, Sturmian measures and the finiteness conjecture
,”
Ergod. Theory Dyn. Syst.
38
,
3062
3100
(
2018
).
19.
I. D.
Morris
, “
Maximizing measures of generic Hölder functions have zero entropy
,”
Nonlinearity
21
,
993
1000
(
2008
).
20.
Y.
Zhao
, “
Constrained ergodic optimization for asymptotically additive potentials
,”
J. Math. Anal. Appl.
474
,
612
639
(
2019
).
21.
E.
Garibaldi
and
J. T. A.
Gomes
, “
Aubry set for asymptotically sub-additive potentials
,”
Stoch. Dyn.
16
,
1660009
(
2016
).
22.
L.
Barreira
and
P.
Doutor
, “
Almost additive multifractal analysis
,”
J. Math. Pures Appl.
92
,
1
17
(
2009
).
23.
L.
Barreira
,
Y.
Cao
, and
J.
Wang
, “
Multifractal analysis of asymptotically additive sequences
,”
J. Stat. Phys.
153
,
888
910
(
2013
).
24.
L.
Barreira
and
B.
Saussol
, “
Variational principles and mixed multifractal spectra
,”
Trans. Am. Math. Soc.
353
,
3919
3944
(
2001
).
25.
L.
Barreira
,
B.
Saussol
, and
J.
Schmeling
, “
Higher-dimensional multifractal analysis
,”
J. Math. Pures Appl.
81
,
67
91
(
2002
).
26.
A. N.
Livsic
, “
Cohomology of dynamical systems
,”
Math. U.S.S.R. Izv.
6
,
1278
1301
(
1972
).
27.
B.
Bárány
,
A.
Käenmäki
, and
I.
Morris
, “
Domination, almost additivity, and thermodynamical formalism for planar matrix cocycles
,”
Isr. J. Math.
239
,
173
214
(
2020
).
28.
L.
Barreira
and
J.
Schmeling
, “
Sets of ‘non-typical’ points have full topological entropy and full Hausdorff dimension
,”
Isr. J. Math.
116
,
29
70
(
2000
).
29.
A.
Katok
and
B.
Hasselblatt
,
Introduction to the Modern Theory of Dynamical Systems
,
Encyclopedia of Mathematics and its Applications
(
Cambridge University Press
,
1995
), Vol.
54
.
30.
M.
Viana
and
K.
Oliveira
,
Foundations of Ergodic Theory
,
Cambridge Studies in Advanced Mathematics
(
Cambridge University Press
,
Cambridge
,
2016
), Vol.
151
.
31.
T.
Bomfim
and
P.
Varandas
, “
Multifractal analysis of the irregular set for almost-additive sequences via large deviations
,”
Nonlinearity
28
(
10
),
3563
3585
(
2015
).
32.
T.
Bousch
, “
La condition de Walters
,”
Ann. Sci. Éc. Norm. Supér.
34
,
287
311
(
2001
).
33.
P.
Walters
, “
Invariant measures and equilibrium states for some mappings which expand distances
,”
Trans. Am. Math. Soc.
236
,
121
153
(
1978
).
34.
S.
Silverman
, “
On maps with dense orbits and the definition of chaos
,”
Rocky Mt. J. Math.
22
,
353
375
(
1992
).
35.
B.
Kalinin
, “
Livšic theorem for matrix cocycles
,”
Ann. Math.
173
,
1025
1042
(
2011
).
36.
D.-J.
Feng
and
K.
Lau
, “
The pressure function for products of non-negative matrices
,”
Math. Res. Lett.
9
,
363
378
(
2002
).
37.
L.
Barreira
and
K.
Gelfert
, “
Multifractal analysis for Lyapunov exponents on nonconformal repellers
,”
Commun. Math. Phys.
267
,
393
418
(
2006
).
38.
R.
Mohammadpour
, “
Lyapunov spectrum properties and continuity of the lower joint spectral radius
,”
J. Stat. Phys.
187
,
23
(
2022
).
39.
S.
Crovisier
and
R.
Potrie
,
Introduction to Partially Hyperbolic Dynamics
,
Notes
(
International Centre for Theoretical Physics
,
Trieste, Italy
,
2015
).
40.
J.
Bochi
and
N.
Gourmelon
, “
Some characterizations of domination
,”
Math. Z.
263
,
221
231
(
2009
).
41.
L.
Barreira
, “
A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems
,”
Ergod. Theory Dyn. Syst.
16
,
871
927
(
1996
).
42.
R.
Bowen
,
Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
,
Springer Lectures Notes in Mathematics
(
Springer Verlag
,
1975
), Vol.
470
.
43.
R. B.
Israel
and
R. R.
Phelps
, “
Some convexity questions arising in statistical mechanics
,”
Math. Scand.
54
,
133
156
(
1984
).
44.
E.
de Faria
and
P.
Guarino
, “
Dynamics of circle mappings
,” in
Coloquio Brasileiro de Matematica
(
IMPA
,
2021
), Vol.
33
.
45.
G.
Iommi
and
Y.
Yayama
, “
Weak Gibbs measures as Gibbs measures for asymptotically additive sequences
,”
Proc. Am. Math. Soc.
145
(
4
),
1599
1614
(
2017
).
46.
T.
Bousch
, “
Une représentation des cobords faibles d’un système dynamique
,”
Ann. Fac. Sci. Toulose: Math.
32
,
817
821
(
2023
).
47.
T.
Bousch
and
O.
Jenkinson
, “
Cohomology classes of dynamically non-negative Ck functions
,”
Invent. Math.
148
,
207
217
(
2002
).
48.
A.
Katok
and
E. A.
Robinson
, Jr.
, “
Cocycles, cohomology and combinatorial constructions in ergodic theory
,” in
Smooth Ergodic Theory and its Applications (Seattle, WA, 1999)
,
Proceedings of Symposium in Pure Mathematics
(
American Mathematical Society
,
Providence, RI
2001
), Vol.
69
, pp.
107
173
.
49.
W.
Krieger
, “
On quasi-invariant measures in uniquely ergodic systems
,”
Invent. Math.
14
,
184
196
(
1971
).
50.
A.
Kocsard
, “
On cohomological C0-(in)stability
,”
Bull. Braz. Math. Soc.
44
,
489
495
(
2013
).
51.
F.
Hofbauer
, “
Examples for the nonuniqueness of the equilibrium state
,”
Trans. Am. Math. Soc.
228
,
223
241
(
1977
).
52.
V.
Climenhaga
and
D.
Thompson
, “
Equilibrium states beyond specification and the Bowen property
,”
J. London Math. Soc.
87
(
2
),
401
427
(
2013
).
53.
H.
Hu
, “
Equilibriums of some non-Hölder potentials
,”
Trans. Am. Math. Soc.
360
(
4
),
2153
2190
(
2008
).
54.
G.
Iommi
and
M.
Todd
, “
Transience in dynamical systems
,”
Ergod. Theory Dyn. Syst.
33
,
1450
1476
(
2012
).
55.
Y.
Pesin
and
K.
Zhang
, “
Phase transitions for uniformly expanding maps
,”
J. Stat. Phys.
122
(
6
),
1095
1110
(
2006
).
56.
P.
Walters
, “
A natural space of functions for the Ruelle operator theorem
,”
Ergod. Theory Dyn. Syst.
27
,
1323
1348
(
2007
).
You do not currently have access to this content.