We prove a C version of Nekhoroshev theorem for time dependent Hamiltonians in Rd×Td. Precisely, we prove a result showing that for all times the energy of the system is bounded by a constant times ⟨tɛ. We apply the result to the dynamics of a charged particle in Td subject to a time dependent electromagnetic field.

1.
N. N.
Nekhoroshev
, “
An exponential estimate of the time of stability of nearly integrable Hamiltonian systems
,”
Uspehi Mat. Nauk
32
(
6
),
287
(
1977
).
2.
N. N.
Nekhoroshev
, “
An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. II
,”
Trudy Sem. Petrovsk.
(
5
),
5
50
(
1979
).
3.
G.
Benettin
,
L.
Galgani
, and
A.
Giorgilli
, “
A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems
,”
Celestial Mech.
37
(
1
),
1
25
(
1985
).
4.
G.
Benettin
and
G.
Gallavotti
, “
Stability of motions near resonances in quasi-integrable Hamiltonian systems
,”
J. Stat. Phys.
44
(
3-4
),
293
338
(
1986
).
5.
J.
Pöschel
, “
Nekhoroshev estimates for quasi-convex Hamiltonian systems
,”
Math. Z.
213
(
1
),
187
216
(
1993
).
6.
A.
Giorgilli
, “
Notes on exponential stability of Hamiltonian systems
” (
Pubblicazioni della Classe di Scienze, Scuola Normale Superiore, Pisa. Centro di Ricerca Matematica, Ennio De Giorgi
,
2003
).
7.
M.
Guzzo
,
L.
Chierchia
, and
G.
Benettin
, “
The steep Nekhoroshev’s theorem
,”
Commun. Math. Phys.
342
(
2
),
569
601
(
2016
).
8.
M.
Kunze
and
D. M. A.
Stuart
, “
Nekhoroshev type stability results for Hamiltonian systems with an additional transversal component
,”
J. Math. Anal. Appl.
419
(
2
),
1351
1386
(
2014
).
9.
J.-P.
Marco
and
D.
Sauzin
, “
Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems
,”
Publ. Math. l'IHÉS
96
(
1
),
199
275
(
2003
).
10.
J.-P.
Marco
and
D.
Sauzin
, “
Wandering domains and random walks in Gevrey near-integrable systems
,”
Ergodic Theory Dyn. Syst.
24
(
5
),
1619
1666
(
2004
).
11.
A.
Bounemoura
, “
Nekhoroshev estimates for finitely differentiable quasi-convex Hamiltonians
,”
J. Differ. Equ.
249
(
11
),
2905
2920
(
2010
).
12.
D.
Bambusi
and
B.
Langella
, “
A C Nekhoroshev theorem
,”
Math. Eng.
3
(
2
),
019
(
2021
).
13.
A.
Bounemoura
and
J.
Féjoz
, “
Hamiltonian perturbation theory for ultra-differentiable functions
,”
Mem. Am. Math. Soc.
270
(
1319
),
v+89
(
2021
).
14.
A.
Bounemoura
, “
Nekhoroshev’s estimates for quasi-periodic time-dependent perturbations
,”
Comment. Math. Helv.
91
(
4
),
653
703
(
2016
).
15.
A.
Giorgilli
and
E.
Zehnder
, “
Exponential stability for time dependent potentials
,”
Z. Angew. Math. Phys.
43
(
5
),
827
855
(
1992
).
16.
G.
Benettin
,
L.
Galgani
, and
A.
Giorgilli
, “
Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part I
,”
Commun. Math. Phys.
113
(
1
),
87
103
(
1987
).
17.
G.
Benettin
,
L.
Galgani
, and
A.
Giorgilli
, “
Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part II
,”
Commun. Math. Phys.
121
(
4
),
557
601
(
1989
).
18.
D.
Bambusi
and
A.
Giorgilli
, “
Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems
,”
J. Stat. Phys.
71
(
3-4
),
569
606
(
1993
).
19.
G.
Benettin
and
F.
Fassò
, “
Fast rotations of the rigid body: A study by Hamiltonian perturbation theory. Part I
,”
Nonlinearity
9
(
1
),
137
186
(
1996
).
20.
D.
Bambusi
,
B.
Langella
, and
R.
Montalto
, “
Spectral asymptotics of all the eigenvalues of Schrödinger operators on flat tori
,”
Nonlinear Anal.
216
,
112679
(
2022
).
21.
D.
Bambusi
,
B.
Langella
, and
R.
Montalto
, “
Growth of Sobolev norms for unbounded perturbations of the Schrödinger equation on flat tori
,”
J. Differ. Equ.
318
,
344
358
(
2022
).
22.
D.
Bambusi
and
B.
Langella
, “
Growth of Sobolev norms in quasi integrable quantum systems
,” arXiv:2202.04505 (
2022
).
23.
P.
Lochak
, “
Canonical perturbation theory: An approach based on joint approximations
,”
Uspekhi Mat. Nauk
47
(
6
),
59
140
(
1992
).
24.
P.
Lochak
and
A. I.
Neĭshtadt
, “
Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian
,”
Chaos
2
(
4
),
495
499
(
1992
).
25.
D.
Bambusi
, “
Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations
,”
Math. Z.
230
(
2
),
345
387
(
1999
).
26.
D.
Bambusi
and
P.
Gérard
, “
A Nekhoroshev theorem for some perturbations of the Benjamin-Ono equation with initial data close to finite gap tori
,”
Math. Z.
307
(
3
),
54
(
2024
).
27.
J.
Bourgain
, “
Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential
,”
Commun. Math. Phys.
204
(
1
),
207
247
(
1999
).
28.
J.
Bourgain
, “
On growth in time of Sobolev norms of smooth solutions of nonlinear Schrödinger equations in RD
,”
J. Anal. Math
72
,
299
310
(
1997
).
29.
W.-M.
Wang
, “
Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations
,”
Commun. Partial Differ. Equ.
33
(
12
),
2164
2179
(
2008
).
30.
J.-M.
Delort
, “
Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds
,”
Int. Math. Res. Not.
2010
(
12
),
2305
2328
.
31.
D.
Bambusi
,
B.
Grébert
,
A.
Maspero
, and
D.
Robert
, “
Growth of sobolev norms for abstract linear Schrödinger equations
,”
J. Eur. Math. Soc.
23
(
2
),
557
583
(
2020
).
32.
M.
Berti
and
A.
Maspero
, “
Long time dynamics of Schrödinger and wave equations on flat tori
,”
J. Differ. Equ.
267
(
2
),
1167
1200
(
2019
).
33.
D.
Bambusi
,
B.
Langella
, and
R.
Montalto
, “
On the spectrum of the Schrödinger operator on Td: A normal form approach
,”
Commun. Partial Differ. Equ.
45
,
303
(
2019
).
You do not currently have access to this content.