We prove a C∞ version of Nekhoroshev theorem for time dependent Hamiltonians in . Precisely, we prove a result showing that for all times the energy of the system is bounded by a constant times ⟨t⟩ɛ. We apply the result to the dynamics of a charged particle in subject to a time dependent electromagnetic field.
REFERENCES
1.
N. N.
Nekhoroshev
, “An exponential estimate of the time of stability of nearly integrable Hamiltonian systems
,” Uspehi Mat. Nauk
32
(6
), 287
(1977
).2.
N. N.
Nekhoroshev
, “An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. II
,” Trudy Sem. Petrovsk.
(5
), 5
–50
(1979
).3.
G.
Benettin
, L.
Galgani
, and A.
Giorgilli
, “A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems
,” Celestial Mech.
37
(1
), 1
–25
(1985
).4.
G.
Benettin
and G.
Gallavotti
, “Stability of motions near resonances in quasi-integrable Hamiltonian systems
,” J. Stat. Phys.
44
(3-4
), 293
–338
(1986
).5.
J.
Pöschel
, “Nekhoroshev estimates for quasi-convex Hamiltonian systems
,” Math. Z.
213
(1
), 187
–216
(1993
).6.
A.
Giorgilli
, “Notes on exponential stability of Hamiltonian systems
” (Pubblicazioni della Classe di Scienze, Scuola Normale Superiore, Pisa. Centro di Ricerca Matematica, Ennio De Giorgi
, 2003
).7.
M.
Guzzo
, L.
Chierchia
, and G.
Benettin
, “The steep Nekhoroshev’s theorem
,” Commun. Math. Phys.
342
(2
), 569
–601
(2016
).8.
M.
Kunze
and D. M. A.
Stuart
, “Nekhoroshev type stability results for Hamiltonian systems with an additional transversal component
,” J. Math. Anal. Appl.
419
(2
), 1351
–1386
(2014
).9.
J.-P.
Marco
and D.
Sauzin
, “Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems
,” Publ. Math. l'IHÉS
96
(1
), 199
–275
(2003
).10.
J.-P.
Marco
and D.
Sauzin
, “Wandering domains and random walks in Gevrey near-integrable systems
,” Ergodic Theory Dyn. Syst.
24
(5
), 1619
–1666
(2004
).11.
A.
Bounemoura
, “Nekhoroshev estimates for finitely differentiable quasi-convex Hamiltonians
,” J. Differ. Equ.
249
(11
), 2905
–2920
(2010
).12.
D.
Bambusi
and B.
Langella
, “A C∞ Nekhoroshev theorem
,” Math. Eng.
3
(2
), 019
(2021
).13.
A.
Bounemoura
and J.
Féjoz
, “Hamiltonian perturbation theory for ultra-differentiable functions
,” Mem. Am. Math. Soc.
270
(1319
), v+89
(2021
).14.
A.
Bounemoura
, “Nekhoroshev’s estimates for quasi-periodic time-dependent perturbations
,” Comment. Math. Helv.
91
(4
), 653
–703
(2016
).15.
A.
Giorgilli
and E.
Zehnder
, “Exponential stability for time dependent potentials
,” Z. Angew. Math. Phys.
43
(5
), 827
–855
(1992
).16.
G.
Benettin
, L.
Galgani
, and A.
Giorgilli
, “Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part I
,” Commun. Math. Phys.
113
(1
), 87
–103
(1987
).17.
G.
Benettin
, L.
Galgani
, and A.
Giorgilli
, “Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part II
,” Commun. Math. Phys.
121
(4
), 557
–601
(1989
).18.
D.
Bambusi
and A.
Giorgilli
, “Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems
,” J. Stat. Phys.
71
(3-4
), 569
–606
(1993
).19.
G.
Benettin
and F.
Fassò
, “Fast rotations of the rigid body: A study by Hamiltonian perturbation theory. Part I
,” Nonlinearity
9
(1
), 137
–186
(1996
).20.
D.
Bambusi
, B.
Langella
, and R.
Montalto
, “Spectral asymptotics of all the eigenvalues of Schrödinger operators on flat tori
,” Nonlinear Anal.
216
, 112679
(2022
).21.
D.
Bambusi
, B.
Langella
, and R.
Montalto
, “Growth of Sobolev norms for unbounded perturbations of the Schrödinger equation on flat tori
,” J. Differ. Equ.
318
, 344
–358
(2022
).22.
D.
Bambusi
and B.
Langella
, “Growth of Sobolev norms in quasi integrable quantum systems
,” arXiv:2202.04505 (2022
).23.
P.
Lochak
, “Canonical perturbation theory: An approach based on joint approximations
,” Uspekhi Mat. Nauk
47
(6
), 59
–140
(1992
).24.
P.
Lochak
and A. I.
Neĭshtadt
, “Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian
,” Chaos
2
(4
), 495
–499
(1992
).25.
D.
Bambusi
, “Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations
,” Math. Z.
230
(2
), 345
–387
(1999
).26.
D.
Bambusi
and P.
Gérard
, “A Nekhoroshev theorem for some perturbations of the Benjamin-Ono equation with initial data close to finite gap tori
,” Math. Z.
307
(3
), 54
(2024
).27.
J.
Bourgain
, “Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential
,” Commun. Math. Phys.
204
(1
), 207
–247
(1999
).28.
J.
Bourgain
, “On growth in time of Sobolev norms of smooth solutions of nonlinear Schrödinger equations in RD
,” J. Anal. Math
72
, 299
–310
(1997
).29.
W.-M.
Wang
, “Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations
,” Commun. Partial Differ. Equ.
33
(12
), 2164
–2179
(2008
).30.
J.-M.
Delort
, “Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds
,” Int. Math. Res. Not.
2010
(12
), 2305
–2328
.31.
D.
Bambusi
, B.
Grébert
, A.
Maspero
, and D.
Robert
, “Growth of sobolev norms for abstract linear Schrödinger equations
,” J. Eur. Math. Soc.
23
(2
), 557
–583
(2020
).32.
M.
Berti
and A.
Maspero
, “Long time dynamics of Schrödinger and wave equations on flat tori
,” J. Differ. Equ.
267
(2
), 1167
–1200
(2019
).33.
D.
Bambusi
, B.
Langella
, and R.
Montalto
, “On the spectrum of the Schrödinger operator on : A normal form approach
,” Commun. Partial Differ. Equ.
45
, 303
(2019
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.