The Kerr-star spacetime is the extension over the horizons and in the negative radial region of the Kerr spacetime. Despite the presence of closed timelike curves below the inner horizon, we prove that the timelike geodesics cannot be closed in the Kerr-star spacetime. Since the existence of closed null geodesics was ruled out by the author in Sanzeni [arXiv:2308.09631v3 (2024)], this result shows the absence of closed causal geodesics in the Kerr-star spacetime.
REFERENCES
1.
Andrews
, G. E.
, Askey
, R.
, and Roy
, R.
,“Special functions
,” in Encyclopedia of Mathematics and its Applications
(Cambridge University Press
, 1999
).2.
Boyer
, R. H.
and Lindquist
, R. W.
, “Maximal analytic extension of the Kerr metric
,” J. Math. Phys.
8
(2
), 265
–281
(1967
).3.
Boyer
, R. H.
and Price
, T. G.
, “An interpretation of the kerr metric in general relativity
,” Math. Proc. Cambridge Philos. Soc.
61
(2
), 531
–534
(1965
).4.
Carter
, B.
, “Complete analytic extension of the symmetry axis of Kerr’s solution of Einstein’s equations
,” Phys. Rev.
141
, 1242
–1247
(1966
).5.
Carter
, B.
, “Global structure of the Kerr family of gravitational fields
,” Phys. Rev.
174
, 1559
–1571
(1968
).6.
Chandrasekhar
, S.
, The Mathematical Theory of Black Holes
(Oxford: Clarendon Press
, 1983
).7.
Chandrasekhar
, S.
and Wright
, J. P.
, “The geodesics in Gödel’s universe
,” Proc. Natl. Acad. Sci. U. S. A.
47
(3
), 341
–347
(1961
).8.
Chruściel
, P.
, Maliborski
, M.
, and Yunes
, N.
, “Structure of the singular ring in Kerr-like metrics
,” Phys. Rev. D
101
, 104048
(2020
).9.
de Felice
, F.
, “Equatorial geodesic motion in the gravitational field of a rotating source
,” Nuovo Cimento B
57
, 351
(1968
).10.
Gödel
, K.
, “An example of a new type of cosmological solutions of Einstein’s field equations of gravitation
,” Rev. Mod. Phys.
21
, 447
–450
(1949
).11.
Kapec
, D.
and Lupsasca
, A.
, “Particle motion near high-spin black holes
,” Classical Quantum Gravity
37
(1
), 015006
(2019
).12.
Kerr
, R. P.
, “Gravitational field of a spinning mass as an example of algebraically special metrics
,” Phys. Rev. Lett.
11
, 237
–238
(1963
).13.
Kundt
, W.
, “Trägheitsbahnen in einem von Gödel angegebenen kosmologischen modell
,” Z. Phys.
145
, 611
–620
(1956
).14.
Nolan
, B.
, “Causality violation without time-travel: Closed lightlike paths in Gödel’s universe
,” Classical Quantum Gravity
37
(8
), 085007
(2020
).15.
O’Neill
, B.
, The Geometry of Kerr Black Holes
, Ak Peters Series
(Taylor & Francis
, 1995
).16.
Sanzeni
, G.
, “Non existence of closed and bounded null geodesics in Kerr spacetimes
,” arXiv:2308.09631v3 (2024
).17.
Schwarzschild
, K.
,“Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie
,” in Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften
(Berlin: Deutsche Akademie der Wissenschaften zu Berlin
, 1916
), pp. 189
–196
.18.
Teo
, E.
, “Spherical photon orbits around a Kerr black hole
,” Gen. Relativ. Gravitation
35
, 1909
–1926
(2003
).19.
Walker
, M.
and Penrose
, R.
, “On quadratic first integrals of the geodesic equations for type {22} spacetimes
,” Commun. Math. Phys.
18
, 265
–274
(1970
).20.
Wilkins
, D.
, “Bound geodesics in the Kerr metric
,” Phys. Rev. D
5
, 814
–822
(1972
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.