We present a quasi-local, functional analytic method to locate and invariantly characterize the stationary limit surfaces of black hole spacetimes with stationary regions. The method is based on ellipticity-hyperbolicity transitions of the Dirac, Klein–Gordon, Maxwell, and Fierz–Pauli Hamiltonians defined on spacelike hypersurfaces of such black hole spacetimes, which occur only at the locations of stationary limit surfaces and can be ascertained from the behaviors of the principal symbols of the Hamiltonians. Therefore, since it relates solely to the effects that stationary limit surfaces have on the time evolutions of the corresponding elementary fermions and bosons, this method is profoundly different from the usual detection procedures that employ either scalar polynomial curvature invariants or Cartan invariants, which, in contrast, make use of the local geometries of the underlying black hole spacetimes. As an application, we determine the locations of the stationary limit surfaces of the Kerr–Newman, Schwarzschild–de Sitter, and Taub–NUT black hole spacetimes. Finally, we show that for black hole spacetimes with static regions, our functional analytic method serves as a quasi-local event horizon detector and gives rise to a relational concept of black hole entropy.

1.
Abdelqader
,
M.
and
Lake
,
K.
, “
Invariant characterization of the Kerr spacetime: Locating the horizon and measuring the mass and spin of rotating black holes using curvature invariants
,”
Phys. Rev. D
91
(
8
),
084017
(
2015
).
2.
Aragone
,
C.
and
Deser
,
S.
, “
Constraints on gravitationally coupled tensor fields
,”
Il Nuovo Cimento A
3
(
4
),
709
720
(
1971
).
3.
Ashtekar
,
A.
,
Beetle
,
C.
,
Dreyer
,
O.
,
Fairhurst
,
S.
,
Krishnan
,
B.
,
Lewandowski
,
J.
, and
Wiśniewski
,
J.
, “
Generic isolated horizons and their applications
,”
Phys. Rev. Lett.
85
(
17
),
3564
3567
(
2000
).
4.
Ashtekar
,
A.
and
Krishnan
,
B.
, “
Dynamical horizons and their properties
,”
Phys. Rev. D
68
(
10
),
104030
(
2003
).
5.
Ashtekar
,
A.
and
Krishnan
,
B.
, “
Isolated and dynamical horizons and their applications
,”
Living Rev. Relativ.
7
,
10
(
2004
).
6.
Booth
,
I.
, “
Black-hole boundaries
,”
Can. J. Phys.
83
(
11
),
1073
1099
(
2005
).
7.
Brooks
,
D.
,
Chavy-Waddy
,
P. C.
,
Coley
,
A. A.
,
Forget
,
A.
,
Gregoris
,
D.
,
MacCallum
,
M. A. H.
, and
McNutt
,
D. D.
, “
Cartan invariants and event horizon detection
,”
Gen. Relativ. Gravitation
50
,
37
(
2018
).
8.
Buchbinder
,
I. L.
,
Gitman
,
D. M.
,
Krykhtin
,
V. A.
, and
Pershin
,
V. D.
, “
Equations of motion for massive spin 2 field coupled to gravity
,”
Nucl. Phys. B
584
(
1–2
),
615
640
(
2000
).
9.
Chandrasekhar
,
S.
,
The Mathematical Theory of Black Holes
(
Oxford University Press
,
New York
,
1983
).
10.
Ellis
,
G. F. R.
and
Schmidt
,
B. G.
, “
Singular space-times
,”
Gen. Relativ. Gravitation
8
(
11
),
915
953
(
1977
).
11.
Evans
,
L. C.
,
Partial Differential Equations
(
American Mathematical Society
,
Rhode Island
,
2010
).
12.
Gass
,
R. G.
,
Esposito
,
F. P.
,
Wijewardhana
,
L. C. R.
, and
Witten
,
L.
, “
Detecting event horizons and stationary surfaces
,” arXiv:gr-qc/9808055 (
1998
).
13.
Geroch
,
R. P.
, “
Local characterization of singularities in general relativity
,”
J. Math. Phys.
9
(
3
),
450
465
(
1968
).
14.
Geroch
,
R. P.
, “
What is a singularity in general relativity?
,”
Ann. Phys.
48
(
3
),
526
540
(
1968
).
15.
Gibbons
,
G. W.
and
Hawking
,
S. W.
, “
Cosmological event horizons, thermodynamics, and particle creation
,”
Phys. Rev. D
15
(
10
),
2738
2751
(
1977
).
16.
Griffiths
,
J. B.
and
Podolský
,
J.
,
Exact Space-times in Einstein’s General Relativity
(
Cambridge University Press
,
New York
,
2009
).
17.
Hawking
,
S. W.
and
Ellis
,
G. F. R.
,
The Large Scale Structure of Space-time
(
Cambridge University Press
,
New York
,
1973
).
18.
Hayward
,
S. A.
, “
General laws of black-hole dynamics
,”
Phys. Rev. D
49
(
12
),
6467
6474
(
1994
).
19.
Hörmander
,
L.
,
The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients
(
Springer
,
Berlin, Heidelberg
,
2005
).
20.
Kagramanova
,
V.
,
Kunz
,
J.
,
Hackmann
,
E.
, and
Lämmerzahl
,
C.
, “
Analytic treatment of complete and incomplete geodesics in Taub–NUT space-times
,”
Phys. Rev. D
81
(
12
),
124044
(
2010
).
21.
Karlhede
,
A.
,
Lindström
,
U.
, and
Åman
,
J. E.
, “
A note on a local effect at the Schwarzschild sphere
,”
Gen. Relativ. Gravitation
14
(
6
),
569
571
(
1982
).
22.
Kruskal
,
M. D.
, “
Maximal extension of Schwarzschild metric
,”
Phys. Rev.
119
(
5
),
1743
1745
(
1960
).
23.
Lake
,
K.
, “
Differential invariants of the Kerr vacuum
,”
Gen. Relativ. Gravitation
36
(
5
),
1159
1169
(
2004
).
24.
Lawson
,
H. B.
and
Michelsohn
,
M.-L.
,
Spin Geometry
(
Princeton University Press
,
Princeton
,
1989
).
25.
Lemaître
,
G.
, “
L’Univers en expansion
,”
Ann. Soc. Sci. Bruxelles
A53
,
51
85
(
1933
).
26.
McNutt
,
D. D.
and
Page
,
D. N.
, “
Scalar polynomial curvature invariant vanishing on the event horizon of any black hole metric conformal to a static spherical metric
,”
Phys. Rev. D
95
(
8
),
084044
(
2017
).
27.
Minguzzi
,
E.
and
Sánchez
,
M.
, “
The causal hierarchy of spacetimes
,” in:
Recent Developments in Pseudo-Riemannian Geometry
, edited by
Alekseevsky
,
D. B.
and
Baum
,
H.
,
(
European Mathematical Society Publishing House
,
Zurich
,
2008
), pp.
299
358
.
28.
Newman
,
E. T.
,
Couch
,
E.
,
Chinnapared
,
K.
,
Exton
,
A.
,
Prakash
,
A.
, and
Torrence
,
R.
, “
Metric of a rotating, charged mass
,”
J. Math. Phys.
6
(
6
),
918
919
(
1965
).
29.
Newman
,
E. T.
,
Tamburino
,
L. A.
, and
Unti
,
T.
, “
Empty-space generalization of the Schwarzschild metric
,”
J. Math. Phys.
4
(
7
),
915
923
(
1963
).
30.
Nojiri
,
S.
and
Odintsov
,
S. D.
, “
Regular multihorizon black holes in modified gravity with nonlinear electrodynamics
,”
Phys. Rev. D
96
(
10
),
104008
(
2017
).
31.
Page
,
D. N.
and
Shoom
,
A. A.
, “
Local invariants vanishing on stationary horizons: A diagnostic for locating black holes
,”
Phys. Rev. Lett.
114
(
14
),
141102
(
2015
).
32.
Penrose
,
R.
, “
Gravitational collapse and space-time singularities
,”
Phys. Rev. Lett.
14
(
3
),
57
59
(
1965
).
33.
Penrose
,
R.
, “
Gravitational collapse: The role of general relativity
,”
Riv. Nuovo Cimento
1
,
252
276
(
1969
).
34.
Penrose
,
R.
and
Rindler
,
W.
,
Spinors and Space-time I: Two-spinor Calculus and Relativistic Fields
(
Cambridge University Press
,
Cambridge
,
1984
).
35.
Peters
,
J. M.
,
Coley
,
A.
, and
Schnetter
,
E.
, “
Curvature invariants in a binary black hole merger
,”
Gen. Relativ. Gravitation
54
,
65
(
2022
).
36.
Röken
,
C.
, “
The massive Dirac equation in Kerr geometry: Separability in Eddington–Finkelstein-type coordinates and asymptotics
,”
Gen. Relativ. Gravitation
49
,
39
(
2017
).
37.
Sorge
,
F.
, “
Kerr spacetime in Lemaître coordinates
,” arXiv:2112.15441 [gr-qc] (
2021
).
38.
Szekeres
,
G.
, “
On the singularities of a Riemannian manifold
,”
Publ. Math. Debrecen
7
,
285
301
(
1960
).
39.
Taub
,
A. H.
, “
Empty space-times admitting a three parameter group of motions
,”
Ann. Math.
53
(
3
),
472
490
(
1951
).
40.
Tavlayan
,
A.
and
Tekin
,
B.
, “
Event horizon detecting invariants
,”
Phys. Rev. D
101
(
8
),
084034
(
2020
).
41.
Taylor
,
M. E.
,
Partial Differential Equations I: Basic Theory
(
Springer
,
New York
,
2011
).
42.
Taylor
,
M. E.
,
Partial Differential Equations II: Qualitative Studies of Linear Equations
(
Springer
,
New York
,
2011
).
43.
Taylor
,
M. E.
,
Partial Differential Equations III: Nonlinear Equations
(
Springer
,
New York
,
2011
).
44.
Thorpe
,
J.
, “
Curvature invariants and space-time singularities
,”
J. Math. Phys.
18
(
5
),
960
964
(
1977
).
45.
Wald
,
R. M.
,
General Relativity
(
University of Chicago Press
,
Chicago
,
1984
).
46.
Weyl
,
H.
, “
Über die statischen kugelsymmetrischen Lösungen von Einsteins “kosmologischen” Gravitationsgleichungen
,”
Phys. Z.
20
,
31
34
(
1919
).
You do not currently have access to this content.