In this paper, we consider the Cauchy problem for a highly nonlinear shallow water model arising from the full water waves with Coriolis effect. The existence of weak solutions to the equation in the lower order Sobolev space Hs(R) with 1<s32 is presented. Moreover, the local well-posedness of strong solutions in Sobolev space Hs(R) with s>32 is established by the pseudoparabolic regularization technique.

1.
Camassa
,
R.
and
Holm
,
D. D.
, “
An integrable shallow water equation with peaked solitons
,”
Phys. Rev. Lett.
71
(
11
),
1661
(
1993
).
2.
Chen
,
R. M.
,
Gui
,
G.
, and
Liu
,
Y.
, “
On a shallow-water approximation to the Green-Naghdi equations with the Coriolis effect
,”
Adv. Math.
340
,
106
137
(
2018
).
3.
Chen
,
R. M.
,
Hu
,
T.
, and
Liu
,
Y.
, “
The shallow-water models with cubic nonlinearity
,”
J. Math. Fluid Mech.
24
(
2
),
49
(
2022
).
4.
Constantin
,
A.
, “
Existence of permanent and breaking waves for a shallow water equation: A geometric approach
,”
Ann. Inst. Fourier
50
,
321
362
(
2000
).
5.
Constantin
,
A.
, “
On the scattering problem for the Camassa-Holm equation
,”
Proc. R. Soc. London, Ser. A
457
(
2008
),
953
970
(
2001
).
6.
Constantin
,
A.
and
Escher
,
J.
, “
Wave breaking for nonlinear nonlocal shallow water equations
,”
Acta Math.
181
(
2
),
229
243
(
1998
).
7.
Constantin
,
A.
and
Lannes
,
D.
, “
The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations
,”
Arch. Ration. Mech. Anal.
192
,
165
186
(
2009
).
8.
Fuchssteiner
,
B.
and
Fokas
,
A. S.
, “
Symplectic structures, their Bäcklund transformations and hereditary symmetries
,”
Physica D
4
(
1
),
47
66
(
1981
).
9.
Gui
,
G.
,
Liu
,
Y.
, and
Sun
,
J.
, “
A nonlocal shallow-water model arising from the full water waves with the Coriolis effect
,”
J. Math. Fluid Mech.
21
,
1
29
(
2019
).
10.
Guo
,
Y.
and
Yin
,
Z.
, “
The Cauchy problem of the rotation Camassa-Holm equation in equatorial water waves
,”
Appl. Anal.
100
(
12
),
2547
2563
(
2021
).
11.
Kato
,
T.
, “
Quasi-linear equations of evolution, with applications to partial differential equations
,” in
Spectral Theory and Differential Equations: Proceedings of the Symposium,
Dundee, Scotland, 1–19 July, 1974 (
Springer
,
2006
), pp.
25
70
.
12.
Lai
,
S.
and
Wu
,
Y.
, “
The local well-posedness and existence of weak solutions for a generalized Camassa-Holm equation
,”
J. Differ. Equations
248
(
8
),
2038
2063
(
2010
).
13.
Lai
,
S.
and
Wu
,
Y.
, “
A model containing both the Camassa-Holm and Degasperis-Procesi equations
,”
J. Math. Anal. Appl.
374
(
2
),
458
469
(
2011
).
14.
Li
,
J.
and
Kou
,
K. I.
, “
Dynamics of traveling wave solutions to a new highly nonlinear shallow water wave equation
,”
Int. J. Bifurcation Chaos
27
(
03
),
1750044
(
2017
).
15.
Li
,
M.
,
Liu
,
X.
, and
Liu
,
Y.
, “
A highly nonlinear shallow-water model arising from the full water waves with the Coriolis effect
,”
J. Math. Fluid Mech.
25
(
2
),
39
(
2023
).
16.
Li
,
Y. A.
and
Olver
,
P. J.
, “
Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation
,”
J. Differ. Equations
162
(
1
),
27
63
(
2000
).
17.
Mi
,
Y.
,
Liu
,
Y.
, and
Guo
,
B.
, “
On the Cauchy problem for a class of cubic quasilinear shallow-water equations
,”
J. Differ. Equations
336
,
589
627
(
2022
).
18.
Mutlubaş
,
N. D.
, “
On the Cauchy problem for a model equation for shallow water waves of moderate amplitude
,”
Nonlinear Anal.: Real World Appl.
14
(
5
),
2022
2026
(
2013
).
19.
Mutlubaş
,
N. D.
, “
Local well-posedness and wave breaking results for periodic solutions of a shallow water equation for waves of moderate amplitude
,”
Nonlinear Anal.
97
,
145
154
(
2014
).
20.
Quirchmayr
,
R.
, “
A new highly nonlinear shallow water wave equation
,”
J. Evol. Equations
16
,
539
567
(
2016
).
21.
Tu
,
X.
,
Liu
,
Y.
, and
Mu
,
C.
, “
Existence and uniqueness of the global conservative weak solutions to the rotation-Camassa-Holm equation
,”
J. Differ. Equations
266
(
8
),
4864
4900
(
2019
).
22.
Xin
,
Z.
and
Zhang
,
P.
, “
On the uniqueness and large time behavior of the weak solutions to a shallow water equation
,”
Commun. Partial Differ. Equations
27
(
9–10
),
1815
1844
(
2002
).
23.
Xin
,
Z.
and
Zhang
,
P.
, “
On the weak solutions to a shallow water equation
,”
Commun. Pure Appl. Math.
53
(
11
),
1411
1433
(
2000
).
24.
Yang
,
S.
and
Xu
,
T.
, “
Well-posedness and persistence property for a shallow water wave equation for waves of large amplitude
,”
Appl. Anal.
98
(
5
),
981
990
(
2019
).
25.
Zhou
,
S.
, “
The local well-posedness, existence and uniqueness of weak solutions for a model equation for shallow water waves of moderate amplitude
,”
J. Differ. Equations
258
(
12
),
4103
4126
(
2015
).
You do not currently have access to this content.