This paper considers the chemotaxis model with density-suppressed motility: ut = ∇·(φ(v)∇u) + ∇·(ψ(v)u∇v) + f(u), vt = Δv + wz, wt = −wz, wt = −wz, zt = Δz − z + u, x ∈ Ω, t > 0 under homogeneous Neumann boundary conditions in a smooth bounded domain . Given that the positive motility function φ(v) has the lower-upper bound, we can conclude that the system possesses a unique bounded classical solution. Moreover, it is proved that the global bounded solution (u, v, w, z) will converge to as t → ∞.
REFERENCES
1.
K.
Fujie
, A.
Ito
, and T.
Yokota
, “Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type
,” 24
, 67
–84
(2014
).2.
M.
Chaplain
and A.
Anderson
, “Mathematical modelling of tissue invasion
,” in Cancer Modelling and Simulation
, Chapman & Hall/CRC Mathematical Biology and Medicine Series (Chapman & Hall/CRC
, Boca Raton, FL
, 2003
), pp. 269
–297
.3.
A. R. A.
Anderson
, “A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion
,” Math. Med. Biol.
22
, 163
–186
(2005
).4.
A.
Marciniak-Czochra
and M.
Ptashnyk
, “Boundedness of solutions of a haptotaxis model
,” Math. Models Methods Appl. Sci.
20
, 449
–476
(2010
).5.
C.
Morales-Rodrigo
, “Local existence and uniqueness of regular solutions in a model of tissue invasion by solid tumours
,” Math. Comput. Modell.
47
, 604
–613
(2008
).6.
C.
Stinner
, C.
Surulescu
, and M.
Winkler
, “Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion
,” SIAM J. Math. Anal.
46
, 1969
–2007
(2014
).7.
Z.
Szymańska
, C. M.
Rodrigo
, M.
Lachowicz
, and M. A. J.
Chaplain
, “Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions
,” Math. Models Methods Appl. Sci.
19
, 257
–281
(2009
).8.
Y.
Tao
, “Global existence for a haptotaxis model of cancer invasion with tissue remodeling
,” Nonlinear Anal.: Real World Appl.
12
, 418
–435
(2011
).9.
C.
Walker
and G. F.
Webb
, “Global existence of classical solutions for a haptotaxis model
,” SIAM J. Math. Anal.
38
, 1694
–1713
(2007
).10.
A.
Friedman
and J. I.
Tello
, “Stability of solutions of chemotaxis equations in reinforced random walks
,” J. Math. Anal. Appl.
272
, 138
–163
(2002
).11.
T.
Hillen
, K. J.
Painter
, and M.
Winkler
, “Convergence of a cancer invasion model to a logistic chemotaxis model
,” Math. Models Methods Appl. Sci.
23
, 165
–198
(2013
).12.
K.
Kang
, A.
Stevens
, and J. J. L.
Velázquez
, “Qualitative behavior of a Keller–Segel model with non-diffusive memory
,” Commun. Partial Differ. Equations
35
, 245
–274
(2010
).13.
G.
Litcanu
and C.
Morales-Rodrigo
, “Asymptotic behaviour of global solutions to a model of cell invasion
,” Math. Models Methods Appl. Sci.
20
, 1721
–1758
(2010
).14.
M.
Winkler
, “A three-dimensional Keller–Segel–Navier–Stokes system with logistic source: Global weak solutions and asymptotic stabilization
,” J. Funct. Anal.
276
, 1339
–1401
(2019
).15.
M.
Winkler
, “Chemotaxis with logistic source: Very weak global solutions and their boundedness properties
,” J. Math. Anal. Appl.
348
(2
), 708
–729
(2008
).16.
M.
Winkler
, “Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with gradient-dependent flux limitation
,” Nonlinear Anal.: Real World Appl.
59
, 103257
(2021
).17.
M.
Winkler
, “Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities
,” SIAM J. Math. Anal.
47
(4
), 3092
–3115
(2015
).18.
M.
Winkler
, “Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity
,” Calculus Var. Partial Differ. Equations
54
, 3789
–3828
(2015
).19.
E.
Keller
and L.
Segel
, “Initiation of slime mold aggregation viewed as an instability
,” J. Theor. Biol.
26
, 399
–415
(1970
).20.
K.
Osaki
and A.
Yagi
, “Finite dimensional attractor for one-dimensional Keller-Segel equations
,” Funkcialaj Ekvacioj
44
(3
), 441
–469
(2001
).21.
M. A.
Herrero
and J. J. L.
Velázquez
, “A blow-up mechanism for a chemotaxis model
,” Ann. Sc. Norm. Super. Pisa-Cl. Sci.
24
(4
), 633
–683
(1997
), http://www.numdam.org/item/ ASNSP_1997_4_24_4_633_0.pdf.22.
T.
Nagai
, T.
Senba
, and K.
Yoshida
, “Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis
,” Funkcialaj Ekvacioj
40
(3
), 411
–433
(1997
), http://fe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE35-40-en_KML/fe40-411-433/fe40-411-433.pdf.23.
T.
Senba
and T.
Suzuki
, “Parabolic system of chemotaxis: Blowup in a finite and the finite time
,” Methods Appl. Anal.
8
, 349
–367
(2001
).24.
N.
Mizoguchi
and M.
Winkler
, “Blow-up in the two-dimensional Keller-Segel system
,” https://cir.nii.ac.jp/crid/1370285714724218755.25.
M.
Winkler
, “Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model
,” J. Differ. Equations
248
, 2889
–2905
(2010
).26.
M.
Winkler
, “Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system
,” J. Math. Pures Appl.
100
, 748
–767
(2013
).27.
M.
Winkler
, “Global solutions in a fully parabolic chemotaxis system with singular sensitivity
,” Math. Methods Appl. Sci.
34
, 176
–190
(2011
).28.
K.
Fujie
, “Boundedness in a fully parabolic chemotaxis system with singular sensitivity
,” J. Math. Anal. Appl.
424
, 675
–684
(2015
).29.
J.
Lankeit
, “A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity
,” Math. Methods Appl. Sci.
39
, 394
–404
(2016
).30.
J.
Lankeit
and M.
Winkler
, “A generalized solution concept for the Keller–Segel system with logarithmic sensitivity: Global solvability for large nonradial data
,” Nonlinear Differ. Equations Appl.
24
, 49
(2017
).31.
C.
Stinner
and M.
Winkler
, “Global weak solutions in a chemotaxis system with large singular sensitivity
,” Nonlinear Anal.: Real World Appl.
12
, 3727
–3740
(2011
).32.
M.
Winkler
, “Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source
,” Commun. Partial Differ. Equations
35
, 1516
–1537
(2010
).33.
M.
Winkler
, “Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening
,” J. Differ. Equations
257
(4
), 1056
–1077
(2014
).34.
Y. S.
Tao
and M.
Winkler
, “Persistence of mass in a chemotaxis system with logistic source
,” J. Differ. Equations
259
(11
), 6142
–6161
(2015
).35.
J.
Lankeit
, “Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source
,” J. Differ. Equations
258
(4
), 1158
–1191
(2015
).36.
C.
Yoon
and Y. J.
Kim
, “Global existence and aggregation in a Keller–Segel model with Fokker–Planck diffusion
,” Acta Appl. Math.
149
, 101
–123
(2017
).37.
Y.
Tao
and M.
Winkler
, “Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system
,” Math. Models Methods Appl. Sci.
27
, 1645
–1683
(2017
).38.
H. Y.
Jin
and T.
Xiang
, “Boundedness and exponential convergence in a chemotaxis model for tumor invasion
,” Nonlinearity
29
, 3579
–3596
(2016
).39.
H. Y.
Jin
, Z. R.
Liu
, and S. J.
Shi
, “Global dynamics of a quasilinear chemotaxis model arising from tumor invasion
,” Nonlinear Anal.: Real World Appl.
44
, 18
–39
(2018
).40.
D.
Li
, C. L.
Mu
, and P.
Zheng
, “Boundedness and large time behavior in a quasilinear chemotaxis model for tumor invasion
,” Math. Models Methods Appl. Sci.
28
, 1413
–1451
(2018
).41.
T.
Yokota
, M.
Winkler
, A.
Ito
, and K.
Fujie
, “Stabilization in a chemotaxis model for tumor invasion
,” Discrete Contin. Dyn. Syst.
36
, 151
–169
(2016
).42.
L.
Nirenberg
, “An extended interpolation inequality
,” Ann. Sc. Norm. Super. Pisa-Cl. Sci.
20
(4
), 733
–737
(1966
), http://eudml.org/doc/83404.43.
M.
Winkler
, “A critical exponent in a degenerate parabolic equation
,” Math. Methods Appl. Sci.
25
, 911
–925
(2002
).44.
O. A.
Ladyzenskaja
, V. A.
Solonnikov
, and N. N.
Ural’tseva
, Linear and Quasi-Linear Equations of Parabolic Type
(American Mathematical Society
, 1968
), Vol. 23.© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.