This paper considers the chemotaxis model with density-suppressed motility: ut = ∇·(φ(v)∇u) + ∇·(ψ(v)uv) + f(u), vt = Δv + wz, wt = −wz, wt = −wz, zt = Δzz + u, x ∈ Ω, t > 0 under homogeneous Neumann boundary conditions in a smooth bounded domain ΩR2. Given that the positive motility function φ(v) has the lower-upper bound, we can conclude that the system possesses a unique bounded classical solution. Moreover, it is proved that the global bounded solution (u, v, w, z) will converge to r/μ1α1,v̄0+w̄0,0,r/μ1α1 as t.

1.
K.
Fujie
,
A.
Ito
, and
T.
Yokota
, “
Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type
,”
24
,
67
84
(
2014
).
2.
M.
Chaplain
and
A.
Anderson
, “
Mathematical modelling of tissue invasion
,” in
Cancer Modelling and Simulation
, Chapman & Hall/CRC Mathematical Biology and Medicine Series (
Chapman & Hall/CRC
,
Boca Raton, FL
,
2003
), pp.
269
297
.
3.
A. R. A.
Anderson
, “
A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion
,”
Math. Med. Biol.
22
,
163
186
(
2005
).
4.
A.
Marciniak-Czochra
and
M.
Ptashnyk
, “
Boundedness of solutions of a haptotaxis model
,”
Math. Models Methods Appl. Sci.
20
,
449
476
(
2010
).
5.
C.
Morales-Rodrigo
, “
Local existence and uniqueness of regular solutions in a model of tissue invasion by solid tumours
,”
Math. Comput. Modell.
47
,
604
613
(
2008
).
6.
C.
Stinner
,
C.
Surulescu
, and
M.
Winkler
, “
Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion
,”
SIAM J. Math. Anal.
46
,
1969
2007
(
2014
).
7.
Z.
Szymańska
,
C. M.
Rodrigo
,
M.
Lachowicz
, and
M. A. J.
Chaplain
, “
Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions
,”
Math. Models Methods Appl. Sci.
19
,
257
281
(
2009
).
8.
Y.
Tao
, “
Global existence for a haptotaxis model of cancer invasion with tissue remodeling
,”
Nonlinear Anal.: Real World Appl.
12
,
418
435
(
2011
).
9.
C.
Walker
and
G. F.
Webb
, “
Global existence of classical solutions for a haptotaxis model
,”
SIAM J. Math. Anal.
38
,
1694
1713
(
2007
).
10.
A.
Friedman
and
J. I.
Tello
, “
Stability of solutions of chemotaxis equations in reinforced random walks
,”
J. Math. Anal. Appl.
272
,
138
163
(
2002
).
11.
T.
Hillen
,
K. J.
Painter
, and
M.
Winkler
, “
Convergence of a cancer invasion model to a logistic chemotaxis model
,”
Math. Models Methods Appl. Sci.
23
,
165
198
(
2013
).
12.
K.
Kang
,
A.
Stevens
, and
J. J. L.
Velázquez
, “
Qualitative behavior of a Keller–Segel model with non-diffusive memory
,”
Commun. Partial Differ. Equations
35
,
245
274
(
2010
).
13.
G.
Litcanu
and
C.
Morales-Rodrigo
, “
Asymptotic behaviour of global solutions to a model of cell invasion
,”
Math. Models Methods Appl. Sci.
20
,
1721
1758
(
2010
).
14.
M.
Winkler
, “
A three-dimensional Keller–Segel–Navier–Stokes system with logistic source: Global weak solutions and asymptotic stabilization
,”
J. Funct. Anal.
276
,
1339
1401
(
2019
).
15.
M.
Winkler
, “
Chemotaxis with logistic source: Very weak global solutions and their boundedness properties
,”
J. Math. Anal. Appl.
348
(
2
),
708
729
(
2008
).
16.
M.
Winkler
, “
Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with gradient-dependent flux limitation
,”
Nonlinear Anal.: Real World Appl.
59
,
103257
(
2021
).
17.
M.
Winkler
, “
Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities
,”
SIAM J. Math. Anal.
47
(
4
),
3092
3115
(
2015
).
18.
M.
Winkler
, “
Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity
,”
Calculus Var. Partial Differ. Equations
54
,
3789
3828
(
2015
).
19.
E.
Keller
and
L.
Segel
, “
Initiation of slime mold aggregation viewed as an instability
,”
J. Theor. Biol.
26
,
399
415
(
1970
).
20.
K.
Osaki
and
A.
Yagi
, “
Finite dimensional attractor for one-dimensional Keller-Segel equations
,”
Funkcialaj Ekvacioj
44
(
3
),
441
469
(
2001
).
21.
M. A.
Herrero
and
J. J. L.
Velázquez
, “
A blow-up mechanism for a chemotaxis model
,”
Ann. Sc. Norm. Super. Pisa-Cl. Sci.
24
(
4
),
633
683
(
1997
), http://www.numdam.org/item/ ASNSP_1997_4_24_4_633_0.pdf.
22.
T.
Nagai
,
T.
Senba
, and
K.
Yoshida
, “
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis
,”
Funkcialaj Ekvacioj
40
(
3
),
411
433
(
1997
), http://fe.math.kobe-u.ac.jp/FE/FE_pdf_with_bookmark/FE35-40-en_KML/fe40-411-433/fe40-411-433.pdf.
23.
T.
Senba
and
T.
Suzuki
, “
Parabolic system of chemotaxis: Blowup in a finite and the finite time
,”
Methods Appl. Anal.
8
,
349
367
(
2001
).
24.
N.
Mizoguchi
and
M.
Winkler
, “
Blow-up in the two-dimensional Keller-Segel system
,” https://cir.nii.ac.jp/crid/1370285714724218755.
25.
M.
Winkler
, “
Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model
,”
J. Differ. Equations
248
,
2889
2905
(
2010
).
26.
M.
Winkler
, “
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system
,”
J. Math. Pures Appl.
100
,
748
767
(
2013
).
27.
M.
Winkler
, “
Global solutions in a fully parabolic chemotaxis system with singular sensitivity
,”
Math. Methods Appl. Sci.
34
,
176
190
(
2011
).
28.
K.
Fujie
, “
Boundedness in a fully parabolic chemotaxis system with singular sensitivity
,”
J. Math. Anal. Appl.
424
,
675
684
(
2015
).
29.
J.
Lankeit
, “
A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity
,”
Math. Methods Appl. Sci.
39
,
394
404
(
2016
).
30.
J.
Lankeit
and
M.
Winkler
, “
A generalized solution concept for the Keller–Segel system with logarithmic sensitivity: Global solvability for large nonradial data
,”
Nonlinear Differ. Equations Appl.
24
,
49
(
2017
).
31.
C.
Stinner
and
M.
Winkler
, “
Global weak solutions in a chemotaxis system with large singular sensitivity
,”
Nonlinear Anal.: Real World Appl.
12
,
3727
3740
(
2011
).
32.
M.
Winkler
, “
Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source
,”
Commun. Partial Differ. Equations
35
,
1516
1537
(
2010
).
33.
M.
Winkler
, “
Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening
,”
J. Differ. Equations
257
(
4
),
1056
1077
(
2014
).
34.
Y. S.
Tao
and
M.
Winkler
, “
Persistence of mass in a chemotaxis system with logistic source
,”
J. Differ. Equations
259
(
11
),
6142
6161
(
2015
).
35.
J.
Lankeit
, “
Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source
,”
J. Differ. Equations
258
(
4
),
1158
1191
(
2015
).
36.
C.
Yoon
and
Y. J.
Kim
, “
Global existence and aggregation in a Keller–Segel model with Fokker–Planck diffusion
,”
Acta Appl. Math.
149
,
101
123
(
2017
).
37.
Y.
Tao
and
M.
Winkler
, “
Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system
,”
Math. Models Methods Appl. Sci.
27
,
1645
1683
(
2017
).
38.
H. Y.
Jin
and
T.
Xiang
, “
Boundedness and exponential convergence in a chemotaxis model for tumor invasion
,”
Nonlinearity
29
,
3579
3596
(
2016
).
39.
H. Y.
Jin
,
Z. R.
Liu
, and
S. J.
Shi
, “
Global dynamics of a quasilinear chemotaxis model arising from tumor invasion
,”
Nonlinear Anal.: Real World Appl.
44
,
18
39
(
2018
).
40.
D.
Li
,
C. L.
Mu
, and
P.
Zheng
, “
Boundedness and large time behavior in a quasilinear chemotaxis model for tumor invasion
,”
Math. Models Methods Appl. Sci.
28
,
1413
1451
(
2018
).
41.
T.
Yokota
,
M.
Winkler
,
A.
Ito
, and
K.
Fujie
, “
Stabilization in a chemotaxis model for tumor invasion
,”
Discrete Contin. Dyn. Syst.
36
,
151
169
(
2016
).
42.
L.
Nirenberg
, “
An extended interpolation inequality
,”
Ann. Sc. Norm. Super. Pisa-Cl. Sci.
20
(
4
),
733
737
(
1966
), http://eudml.org/doc/83404.
43.
M.
Winkler
, “
A critical exponent in a degenerate parabolic equation
,”
Math. Methods Appl. Sci.
25
,
911
925
(
2002
).
44.
O. A.
Ladyzenskaja
,
V. A.
Solonnikov
, and
N. N.
Ural’tseva
,
Linear and Quasi-Linear Equations of Parabolic Type
(
American Mathematical Society
,
1968
), Vol. 23.
You do not currently have access to this content.