Consider a finite connected graph denoted as G = (V, E). This study explores a generalized Chern-Simons Higgs model, characterized by the equation Δu=λeu(eu1)2p+1+f, where Δ denotes the graph Laplacian, λ is a real number, p is a non-negative integer, and f is a function on V. Through the computation of the topological degree, this paper demonstrates the existence of a single solution for the model. Further analysis of the interplay between the topological degree and the critical group of an associated functional reveals the presence of multiple solutions. These findings extend the work of Li et al. [Calc. Var. 63, 81 (2024)] and Chao and Hou [J. Math. Anal. Appl. 519, 126787 (2023)].

1.
J.
Hong
,
Y.
Kim
, and
P. Y.
Pac
, “
Multivortex solutions of the abelian Chern–Simons–Higgs theory
,”
Phys. Rev. Lett.
64
(
19
),
2230
2233
(
1990
).
2.
R.
Jackiw
and
E. J.
Weinberg
, “
Self-dual Chern–Simons vortices
,”
Phys. Rev. Lett.
64
(
19
),
2234
2237
(
1990
).
3.
D.
Chae
and
N.
Kim
, “
Topological multivortex solutions of the self-dual Maxwell–Chern–Simons–Higgs system
,”
J. Differ. Equations
134
(
1
),
154
182
(
1997
).
4.
G.
Wang
and
L.
Zhang
, “
Non-topological solutions of the relativistic SU(3) Chern–Simons Higgs model
,”
Commun. Math. Phys.
202
(
3
),
501
515
(
1999
).
5.
H.
Chan
,
C.-C.
Fu
, and
C.-S.
Lin
, “
Non-topological multi-vortex solutions to the self-dual Chern–Simons–Higgs equation
,”
Commun. Math. Phys.
231
(
2
),
189
221
(
2002
).
6.
J.
Han
and
H.-S.
Nam
, “
On the topological multivortex solutions of the self-dual Maxwell–Chern–Simons gauged O(3) sigma model
,”
Lett. Math. Phys.
73
(
1
),
17
31
(
2005
).
7.
H.-Y.
Huang
and
C.-S.
Lin
, “
Uniqueness of non-topological solutions for the Chern–Simons system with two Higgs particles
,”
Kodai Math. J.
37
(
2
),
274
284
(
2014
).
8.
H.-Y.
Huang
,
Y.
Lee
, and
C.-S.
Lin
, “
Uniqueness of topological multi-vortex solutions for a skew-symmetric Chern–Simons system
,”
J. Math. Phys.
56
(
4
),
041501
(
2015
).
9.
B.
Guo
and
F.
Li
, “
Existence of topological vortices in an Abelian Chern–Simons model
,”
J. Math. Phys.
56
(
10
),
101505
(
2015
).
10.
L. A.
Caffarelli
and
Y. S.
Yang
, “
Vortex condensation in the Chern–Simons Higgs model: An existence theorem
,”
Commun. Math. Phys.
168
(
2
),
321
336
(
1995
).
11.
G.
Tarantello
, “
Multiple condensate solutions for the Chern–Simons–Higgs theory
,”
J. Math. Phys.
37
(
8
),
3769
3796
(
1996
).
12.
X.
Han
, “
The existence of multi-vortices for a generalized self-dual Chern–Simons model
,”
Nonlinearity
26
(
3
),
805
835
(
2013
).
13.
A.
Huang
,
Y.
Lin
, and
S.-T.
Yau
, “
Existence of solutions to mean field equations on graphs
,”
Commun. Math. Phys.
377
(
1
),
613
621
(
2020
).
14.
S.
Hou
and
J.
Sun
, “
Existence of solutions to Chern–Simons–Higgs equations on graphs
,”
Calc. Var. Partial Differ. Equations
61
(
4
),
139
(
2022
).
15.
H.-Y.
Huang
,
J.
Wang
, and
W.
Yang
, “
Mean field equation and relativistic Abelian Chern–Simons model on finite graphs
,”
J. Funct. Anal.
281
(
10
),
109218
(
2021
).
16.
R.
Chao
,
S.
Hou
, and
J.
Sun
, “
Existence of solutions to a generalized self-dual Chern–Simons system on finite graphs
,” arXiv:2206.12863 (
2022
).
17.
R.
Chao
and
S.
Hou
, “
Multiple solutions for a generalized Chern–Simons equation on graphs
,”
J. Math. Anal. Appl.
519
(
1
),
126787
(
2023
).
18.
J.
Gao
and
S.
Hou
, “
Existence theorems for a generalized Chern–Simons equation on finite graphs
,”
J. Math. Phys.
64
(
9
),
091502
(
2023
).
19.
B.
Hua
,
G.
Huang
, and
J.
Wang
, “
The existence of topological solutions to the Chern–Simons model on lattice graphs
,” arXiv:2310.13905 (
2023
).
20.
A.
Grigor’yan
,
Y.
Lin
, and
Y.
Yang
, “
Kazdan–Warner equation on graph
,”
Calc. Var. Partial Differ. Equations
55
(
4
),
92
(
2016
).
21.
H.
Ge
, “
Kazdan–Warner equation on graph in the negative case
,”
J. Math. Anal. Appl.
453
(
2
),
1022
1027
(
2017
).
22.
M.
Keller
and
M.
Schwarz
, “
The Kazdan–Warner equation on canonically compactifiable graphs
,”
Calc. Var. Partial Differ. Equations
57
(
2
),
70
(
2018
).
23.
N.
Zhang
and
L.
Zhao
, “
Convergence of ground state solutions for nonlinear Schrödinger equations on graphs
,”
Sci. China Math.
61
(
8
),
1481
1494
(
2018
).
24.
S.
Man
, “
On a class of nonlinear Schrödinger equations on finite graphs
,”
Bull. Aust. Math. Soc.
101
(
3
),
477
487
(
2020
).
25.
A.
Grigor’yan
,
Y.
Lin
, and
Y.
Yang
, “
Yamabe type equations on graphs
,”
J. Differ. Equations
261
(
9
),
4924
4943
(
2016
).
26.
H.
Ge
and
W.
Jiang
, “
Yamabe equations on infinite graphs
,”
J. Math. Anal. Appl.
460
(
2
),
885
890
(
2018
).
27.
X. L.
Han
and
M. Q.
Shao
, “
p-Laplacian equations on locally finite graphs
,”
Acta Math. Sin., Engl. Ser.
37
(
11
),
1645
1678
(
2021
).
28.
B.
Hua
and
W.
Xu
, “
The existence of ground state solutions for nonlinear p-Laplacian equations on lattice graphs
,” arXiv:2310.08119 (
2023
).
29.
L.
Sun
and
L.
Wang
, “
Brouwer degree for Kazdan–Warner equations on a connected finite graph
,”
Adv. Math.
404
,
108422
(
2022
).
30.
L.
Yang
, “
Brouwer degree for mean field equation on graph
,”
Bull. Korean Math. Soc.
59
(
5
),
1305
1315
(
2022
).
31.
J.
Li
,
L.
Sun
, and
Y.
Yang
, “
Topological degree for Chern–Simons Higgs models on finite graphs
,”
Calc. Var. Partial Differ. Equations
63
(
4
),
81
(
2024
).
32.
K.-c.
Chang
,
Infinite-dimensional Mores Theory and Multiple Solution Problems
,
Progress in Nonlinear Differential Equations and their Applications
(
Birkhäuser Boston, Inc.
,
Boston, MA
,
1993
), Vol.
6
.
You do not currently have access to this content.