In this paper, we investigate the uniqueness of blowup at singular points of the free boundary in the superconductivity problem. We provide a sufficient condition and demonstrate that this condition can be verified in certain special cases. The proof of the main results in this paper is primarily based on Weiss-type and Monneau-type monotonicity formulas, and is inspired by the recent paper [Chen et al. arXiv: 2204.11426v2 (2022)].
REFERENCES
1.
Berestycki
, H.
, Bonnet
, A.
, and Chapman
, S. J.
, “A semi-elliptic system arising in the theory of type-II superconductivity
,” Comm. Appl. Nonlinear Anal.
1
(3
), 1
–21
(1994
).2.
Monneau
, R.
and Bonnet
, A.
, “Distribution of vortices in a type-II superconductor as a free boundary problem: Existence and regularity via Nash–Moser theory
,” Interfaces Free Bound
2
(2
), 181
–200
(2000
).3.
Caffarelli
, L. A.
, “The obstacle problem revisited
,” J. Fourier Anal. Appl.
4
(4–5
), 383
–402
(1998
).4.
Caffarelli
, L. A.
and Salazar
, J.
, “Solutions of fully nonlinear elliptic equations with patches of zero gradient: Existence, regularity and convexity of level curves
,” Trans. Amer. Math. Soc.
354
(8
), 3095
–3115
(2002
).5.
Caffarelli
, L. A.
and Shahgholian
, H.
, “The structure of the singular set of a free boundary in potential theory
,” Izv. Nats. Akad. Nauk Armenii Mat.
39
(2
), 43
–58
(2004
).6.
Caffarelli
, L. A.
, Salazar
, J.
, and Shahgholian
, H.
, “Free-boundary regularity for a problem arising in superconductivity
,” Arch. Ration. Mech. Anal.
171
(1
), 115
–128
(2004
).7.
Chapman
, S. J.
, “A mean-field model of superconducting vortices in three dimensions
,” SIAM J. Appl. Math.
55
(5
), 1259
–1274
(1995
).8.
Chapman
, S. J.
, Rubinstein
, J.
, and Schatzman
, M.
, “A mean-field model of superconducting vortices
,” Eur. J. Appl. Math.
7
(2
), 97
–111
(1996
).9.
Chen
, S.
, Feng
, Y.
, and Li
, Y.
, “A note on the singular set of the no-sign obstacle problem
,” arXiv: 2204.11426v2 (2022
).10.
Elliott
, M.
, Stoth
, B. E. E.
, and Schätzle
, R.
, “Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity
,” Arch. Ration. Mech. Anal.
145
(2
), 99
–127
(1998
).11.
Fernandez-Real
, X.
and Ros-Oton
, X.
, PDE Regularity Theory for Elliptic
, Zurich Lectures in Advanced Mathematics
(EMS Press
, Berlin
, 2022
).12.
Figalli
, A.
, “Regularity of interfaces in phase transitions via obstacle problems
,” in Proceedings of the International Congress of Mathematicians–Rio de Janeiro 2018
(World Science. Publication
, Hackensack, NJ
, 2018
), Vol. I
, pp. 225
–247
Plenary lectures.13.
Figalli
, A.
, “Free boundary regularity in obstacle problems
,” Journées équations aux dérivées partielles
2
, 1
–26
(2018
).14.
Monneau
, R.
, “On the number of singularities for the obstacle problem in two dimensions
,” J. Geom. Anal.
13
(2
), 359
–389
(2003
).15.
Monneau
, R.
, “On the regularity of a free boundary for a nonlinear obstacle problem arising in superconductor modelling
,” Ann. Fac. Sci. Univ. Toulouse Sci. Math.
13
(2
), 289
–311
(2004
).16.
Petrosyan
, A.
, Shahgholian
, H.
, and Uraltseva
, N.
, Regularity of free boundaries in obstacle-type problems, Graduate Studies in Mathematics
(American Mathematical Society
, Providence, RI
, 2012
), Vol. 136
.17.
Rodrigues
, J.-F.
, Obstacle Problems In Mathematical Physics, North-Holland Mathematics Studies
(North-Holland Publishing Co.
, Amsterdam
, 1987
), Vol. 134
.18.
Sandier
, E.
and Serfaty
, S.
, “A rigorous derivation of a free-boundary problem arising in superconductivity
,” Ann. Sci. Éc. Norm. Supér.
33
(4
), 561
–592
(2000
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.