In this work, we address the question of the impossibility of certain single-letter formulas by exploiting the semi-algebraic nature of various entropy-constrained sets. The focus lies on studying the properties of the level sets of relative entropy, mutual information, and Rényi entropies. We analyze the transcendental structure of the set of states in which one of the aforementioned entropy quantities is fixed. Our results rule out (semi)algebraic single-shot characterizations of these entropy measures with bounded ancilla for both the classical and quantum cases.
REFERENCES
1.
M.
Fannes
, B.
Nachtergaele
, and R. F.
Werner
, “Finitely correlated states on quantum spin chains
,” Commun. Math. Phys.
144
, 443
–490
(1992
).2.
M. M.
Wolf
, T. S.
Cubitt
, and D.
Perez-Garcia
, “Are problems in quantum information theory (un)decidable?
,” arXiv:1111.5425 (2011
).3.
V.
Blakaj
and M. M.
Wolf
, “Transcendental properties of entropy-constrained sets
,” Ann. Henri Poincaré
24
, 349
–362
(2023
).4.
G. D. L.
Cuevas
, T.
Netzer
, and I.
Valentiner-Branth
, “Magic squares: Latin, semiclassical and quantum
,” J. Math. Phys.
64
, 022201
(2023
).5.
P.
Boes
, J.
Eisert
, R.
Gallego
, M. P.
Müller
, and H.
Wilming
, “Von Neumann entropy from unitarity
,” Phys. Rev. Lett.
122
, 210402
(2019
).6.
H.
Wilming
, “Entropy and reversible catalysis
,” Phys. Rev. Lett.
127
(26
), 260402
(2021
).7.
H.
Wilming
, “Correlations in typicality and an affirmative solution to the exact catalytic entropy conjecture
,” Quantum
6
, 858
(2022
).8.
S.
Rethinasamy
and M. M.
Wilde
, “Relative entropy and catalytic relative majorization
,” Phys. Rev. Res.
2
, 033455
(2020
).9.
T. V.
Kondra
, C.
Datta
, and A.
Streltsov
, “Catalytic transformations of pure entangled states
,” Phys. Rev. Lett.
127
, 150503
(2021
).10.
C.
Datta
, T. V.
Kondra
, M.
Miller
, and A.
Streltsov
, “Entaglement catalysis for quantum states and noisy quantum channels
,” Quantum
8
, 1290
(2024
).11.
H.-K.
Lo
and S.
Popescu
, “Concentrating entanglement by local actions: Beyond mean values
,” Phys. Rev. A
63
, 022301
(2001
).12.
J.
Bochnak
, M.
Coste
, and M.-F.
Roy
, Real Algebraic Geometry
(Springer
, 1998
).13.
D.
Jonathan
and M. B.
Plenio
, “Entanglement-assisted local manipulation of pure quantum states
,” Phys. Rev. Lett.
83
, 3566
–3569
(1999
).14.
S. K.
Daftuar
, “Eigenvalue inequalities in quantum information processing
,” Ph.D. thesis, California Institute of Technology
, 2004
.15.
M. S.
Pinsker
, Information and Information Stability of Random Variables and Processes
(Holden Day
, 1964
).16.
A.
Winter
, “Tight uniform continuity bounds for quantum entropies: Conditional entropy, relative entropy distance and energy constraints
,” Commun. Math. Phys.
347
, 291
–313
(2016
).17.
A.
Bluhm
, A.
Capel
, P.
Gondolf
, and A.
Perez-Hernandez
, “Continuity of quantum entropic quantities via almost convexity
,” IEEE Trans. Inform. Theory
69
, 5869
–5901
(2023
).18.
M. M.
Wilde
, Quantum Information Theory
(Cambridge University Press
, 2013
).19.
M.
Coste
, An Introduction to Semialgebraic Geometry
(Istituti Editoriali e Poligrafici Internazionali
, 2002
).20.
P. A.
Griffiths
, Introduction to Algebraic Curves
(American Mathematical Society
, 1989
).21.
K.
Guan
and J.
Lei
, “Notes on algebraic functions
,” Int. J. Math. Math. Sci.
2003
, 835
.© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.