We study a class of nonlocal games, called transitive games, for which the set of perfect strategies forms a semigroup. We establish several interesting correspondences of bisynchronous transitive games with the theory of compact quantum groups. In particular, we associate a quantum permutation group with each bisynchronous transitive game and vice versa. We prove that the existence of a C*-strategy, the existence of a quantum commuting strategy, and the existence of a classical strategy are all equivalent for bisynchronous transitive games. We then use some of these correspondences to establish necessary and sufficient conditions for some classes of correlations, that arise as perfect strategies of transitive games, to be nonlocal.

1.
Atserias
,
A.
,
Mančinska
,
L.
,
Roberson
,
D. E.
,
Šámal
,
R.
,
Severini
,
S.
, and
Varvitsiotis
,
A.
, “
Quantum and non-signalling graph isomorphisms
,”
J. Comb. Theory, Ser. B
136
,
289
328
(
2019
).
2.
Avitzour
,
D.
, “
Free products of C*-algebras
,”
Trans. Am. Math. Soc.
271
(
2
),
423
435
(
1982
).
3.
Banica
,
T.
, “
Symmetries of a generic coaction
,”
Math. Ann.
314
(
4
),
763
780
(
1999
).
4.
Banica
,
T.
, “
Quantum automorphism groups of homogeneous graphs
,”
J. Funct. Anal.
224
(
2
),
243
280
(
2005
).
5.
Banica
,
T.
and
McCarthy
,
J.
, “
The Frucht property in the quantum group setting
,”
Glasgow Math. J.
64
(
3
),
603
633
(
2022
).
6.
Bédos
,
E.
,
Murphy
,
G. J.
, and
Tuset
,
L.
, “
Co-amenability of compact quantum groups
,”
J. Geom. Phys.
40
(
2
),
129
153
(
2001
).
7.
Blackadar
,
B.
,
Operator Algebras Theory of C*-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry
,
Volume 122 of Encyclopaedia of Mathematical Sciences III
(
Springer-Verlag
,
Berlin
,
2006
).
8.
De Commer
,
K.
, “
Actions of compact quantum groups
,” in
Topological Quantum Groups, Volume 111 of Banach Center Publication
(
Mathematical Institute of the Polish Academy of Sciences
,
Warsaw
,
2017
), pp.
33
100
.
9.
Dykema
,
K.
,
Paulsen
,
V. I.
, and
Prakash
,
J.
, “
Non-closure of the set of quantum correlations via graphs
,”
Commun. Math. Phys.
365
(
3
),
1125
1142
(
2019
).
10.
Helton
,
J. W.
,
Meyer
,
K. P.
,
Paulsen
,
V. I.
, and
Satriano
,
M.
, “
Algebras, synchronous games, and chromatic numbers of graphs
,”
New York J. Math.
25
,
328
361
(
2019
).
11.
Ji
,
Z.
,
Natarajan
,
A.
,
Vidick
,
T.
,
Wright
,
J.
, and
Yuen
,
H.
, “
MIP* = RE
,” arXiv:2001.04383 (
2020
).
12.
Lupini
,
M.
,
Mančinska
,
L.
,
Paulsen
,
V. I.
,
Roberson
,
D. E.
,
Scarpa
,
G.
,
Severini
,
S.
,
Todorov
,
I. G.
, and
Winter
,
A.
, “
Perfect strategies for non-local games
,”
Math. Phys. Anal. Geom.
,
23
(
7
),
31
(
2020
).
13.
Lupini
,
M.
,
Mančinska
,
L.
, and
Roberson
,
D. E.
, “
Nonlocal games and quantum permutation groups
,”
J. Funct. Anal.
279
(
5
),
108592
108644
(
2020
).
14.
Mančinska
,
L.
and
Roberson
,
D. E.
, “
Quantum homomorphisms
,”
J. Comb. Theory, Ser. B
118
,
228
267
(
2016
).
15.
Musto
,
B.
,
Reutter
,
D.
, and
Verdon
,
D.
, “
A compositional approach to quantum functions
,”
J. Math. Phys.
59
(
8
),
081706
081742
(
2018
).
16.
Neshveyev
,
S.
and
Tuset
,
L.
,
Compact Quantum Groups and Their Representation Categories, Volume 20 of Cours Spécialisés [Specialized Courses]
(
Société Mathématique de France
,
Paris
,
2013
), ISBN: 978-2-85629-777-3.
17.
Ortiz
,
C. M.
and
Paulsen
,
V. I.
, “
Quantum graph homomorphisms via operator systems
,”
Linear Algebra Appl.
497
,
23
43
(
2016
).
18.
Paulsen
,
V. I.
and
Rahaman
,
M.
, “
Bisynchronous games and factorizable maps
,”
Ann. Henri Poincaré
22
(
2
),
593
614
(
2021
).
19.
Paulsen
,
V. I.
,
Severini
,
S.
,
Stahlke
,
D.
,
Todorov
,
I. G.
, and
Winter
,
A.
, “
Estimating quantum chromatic numbers
,”
J. Funct. Anal.
270
(
6
),
2188
2222
(
2016
).
20.
Roberson
,
D. E.
and
Schmidt
,
S.
, “
Quantum symmetry vs nonlocal symmetry
,” arXiv:2012.13328 (
2020
).
21.
Slofstra
,
W.
, “
The set of quantum correlations is not closed
,”
Forum Math., Pi
7
,
e1
e41
(
2019
).
22.
Slofstra
,
W.
, “
Tsirelson’s problem and an embedding theorem for groups arising from non-local games
,”
J. Amer. Math. Soc.
33
(
1
),
1
56
(
2019
).
23.
Sołtan
,
P. M.
, “
Quantum semigroups from synchronous games
,”
J. Math. Phys.
60
(
4
),
042203
(
2019
).
24.
Sołtan
,
P. M.
, “
Quantum families of maps and quantum semigroups on finite quantum spaces
,”
J. Geom. Phys.
59
(
3
),
354
368
(
2009
). https://www.sciencedirect.com/science/article/pii/S0393044008001885
25.
Wang
,
S.
, “
Quantum symmetry groups of finite spaces
,”
Commun. Math. Phys.
195
(
1
),
195
211
(
1998
).
26.
Woronowicz
,
S. L.
, “
Compact quantum groups
,” in
Symétries Quantiques (Les Houches, 1995)
(
North-Holland
,
Amsterdam
,
1998
), pp.
845
884
.
You do not currently have access to this content.