We study a class of nonlocal games, called transitive games, for which the set of perfect strategies forms a semigroup. We establish several interesting correspondences of bisynchronous transitive games with the theory of compact quantum groups. In particular, we associate a quantum permutation group with each bisynchronous transitive game and vice versa. We prove that the existence of a C*-strategy, the existence of a quantum commuting strategy, and the existence of a classical strategy are all equivalent for bisynchronous transitive games. We then use some of these correspondences to establish necessary and sufficient conditions for some classes of correlations, that arise as perfect strategies of transitive games, to be nonlocal.
REFERENCES
1.
Atserias
, A.
, Mančinska
, L.
, Roberson
, D. E.
, Šámal
, R.
, Severini
, S.
, and Varvitsiotis
, A.
, “Quantum and non-signalling graph isomorphisms
,” J. Comb. Theory, Ser. B
136
, 289
–328
(2019
).2.
Avitzour
, D.
, “Free products of C*-algebras
,” Trans. Am. Math. Soc.
271
(2
), 423
–435
(1982
).3.
Banica
, T.
, “Symmetries of a generic coaction
,” Math. Ann.
314
(4
), 763
–780
(1999
).4.
Banica
, T.
, “Quantum automorphism groups of homogeneous graphs
,” J. Funct. Anal.
224
(2
), 243
–280
(2005
).5.
Banica
, T.
and McCarthy
, J.
, “The Frucht property in the quantum group setting
,” Glasgow Math. J.
64
(3
), 603
–633
(2022
).6.
Bédos
, E.
, Murphy
, G. J.
, and Tuset
, L.
, “Co-amenability of compact quantum groups
,” J. Geom. Phys.
40
(2
), 129
–153
(2001
).7.
Blackadar
, B.
, Operator Algebras Theory of C*-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry
, Volume 122 of Encyclopaedia of Mathematical Sciences III
(Springer-Verlag
, Berlin
, 2006
).8.
De Commer
, K.
, “Actions of compact quantum groups
,” in Topological Quantum Groups, Volume 111 of Banach Center Publication
(Mathematical Institute of the Polish Academy of Sciences
, Warsaw
, 2017
), pp. 33
–100
.9.
Dykema
, K.
, Paulsen
, V. I.
, and Prakash
, J.
, “Non-closure of the set of quantum correlations via graphs
,” Commun. Math. Phys.
365
(3
), 1125
–1142
(2019
).10.
Helton
, J. W.
, Meyer
, K. P.
, Paulsen
, V. I.
, and Satriano
, M.
, “Algebras, synchronous games, and chromatic numbers of graphs
,” New York J. Math.
25
, 328
–361
(2019
).11.
12.
Lupini
, M.
, Mančinska
, L.
, Paulsen
, V. I.
, Roberson
, D. E.
, Scarpa
, G.
, Severini
, S.
, Todorov
, I. G.
, and Winter
, A.
, “Perfect strategies for non-local games
,” Math. Phys. Anal. Geom.
, 23
(7
), 31
(2020
).13.
Lupini
, M.
, Mančinska
, L.
, and Roberson
, D. E.
, “Nonlocal games and quantum permutation groups
,” J. Funct. Anal.
279
(5
), 108592
–108644
(2020
).14.
Mančinska
, L.
and Roberson
, D. E.
, “Quantum homomorphisms
,” J. Comb. Theory, Ser. B
118
, 228
–267
(2016
).15.
Musto
, B.
, Reutter
, D.
, and Verdon
, D.
, “A compositional approach to quantum functions
,” J. Math. Phys.
59
(8
), 081706
–081742
(2018
).16.
Neshveyev
, S.
and Tuset
, L.
, Compact Quantum Groups and Their Representation Categories, Volume 20 of Cours Spécialisés [Specialized Courses]
(Société Mathématique de France
, Paris
, 2013
), ISBN: 978-2-85629-777-3.17.
Ortiz
, C. M.
and Paulsen
, V. I.
, “Quantum graph homomorphisms via operator systems
,” Linear Algebra Appl.
497
, 23
–43
(2016
).18.
Paulsen
, V. I.
and Rahaman
, M.
, “Bisynchronous games and factorizable maps
,” Ann. Henri Poincaré
22
(2
), 593
–614
(2021
).19.
Paulsen
, V. I.
, Severini
, S.
, Stahlke
, D.
, Todorov
, I. G.
, and Winter
, A.
, “Estimating quantum chromatic numbers
,” J. Funct. Anal.
270
(6
), 2188
–2222
(2016
).20.
21.
Slofstra
, W.
, “The set of quantum correlations is not closed
,” Forum Math., Pi
7
, e1
–e41
(2019
).22.
Slofstra
, W.
, “Tsirelson’s problem and an embedding theorem for groups arising from non-local games
,” J. Amer. Math. Soc.
33
(1
), 1
–56
(2019
).23.
Sołtan
, P. M.
, “Quantum semigroups from synchronous games
,” J. Math. Phys.
60
(4
), 042203
(2019
).24.
Sołtan
, P. M.
, “Quantum families of maps and quantum semigroups on finite quantum spaces
,” J. Geom. Phys.
59
(3
), 354
–368
(2009
). https://www.sciencedirect.com/science/article/pii/S0393044008001885 25.
Wang
, S.
, “Quantum symmetry groups of finite spaces
,” Commun. Math. Phys.
195
(1
), 195
–211
(1998
).26.
Woronowicz
, S. L.
, “Compact quantum groups
,” in Symétries Quantiques (Les Houches, 1995)
(North-Holland
, Amsterdam
, 1998
), pp. 845
–884
.© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.