The Kirkwood–Dirac (KD) quasiprobability distribution can describe any quantum state with respect to the eigenbases of two observables A and B. KD distributions behave similarly to classical joint probability distributions but can assume negative and nonreal values. In recent years, KD distributions have proven instrumental in mapping out nonclassical phenomena and quantum advantages. These quantum features have been connected to nonpositive entries of KD distributions. Consequently, it is important to understand the geometry of the KD-positive and -nonpositive states. Until now, there has been no thorough analysis of the KD positivity of mixed states. Here, we investigate the dependence of the full convex set of states with positive KD distributions on the eigenbases of A and B and on the dimension d of the Hilbert space. In particular, we identify three regimes where convex combinations of the eigenprojectors of A and B constitute the only KD-positive states: (i) any system in dimension 2; (ii) an open and dense probability one set of bases in dimension d = 3; and (iii) the discrete-Fourier-transform bases in prime dimension. Finally, we show that, if for example d = 2m, there exist, for suitable choices of A and B, mixed KD-positive states that cannot be written as convex combinations of pure KD-positive states. We further explicitly construct such states for a spin-1 system.

1.
Wigner
,
E.
, “
On the quantum correction for thermodynamic equilibrium
,”
Phys. Rev.
40
(
5
),
749
759
(
1932
).
2.
Hudson
,
R. L.
, “
When is the Wigner quasi-probability density non-negative?
,”
Rep. Math. Phys.
6
(
2
),
249
252
(
1974
).
3.
Cohen
,
L.
, “
Can quantum mechanics be formulated as a classical probability theory?
,”
Philos. Sci.
33
(
4
),
317
322
(
1966
).
4.
Srinivas
,
M. D.
and
Wolf
,
E.
, “
Some nonclassical features of phase-space representations of quantum mechanics
,”
Phys. Rev. D
11
(
6
),
1477
1485
(
1975
).
5.
Hartle
,
J. B.
, “
Linear positivity and virtual probability
,”
Phys. Rev. A
70
(
2
),
022104
(
2004
).
6.
Allahverdyan
,
A. E.
, “
Imprecise probability for non-commuting observables
,”
New J. Phys.
17
(
8
),
085005
(
2015
).
7.
Brookes
,
B. C.
and
Kolmogorov
,
A. N.
, “
Foundations of the theory of probability
,”
Math. Gaz.
35
(
314
),
292
(
1951
).
8.
Cahill
,
K.
and
Glauber
,
R. J.
, “
Ordered expansions in boson amplitude operators
,”
Phys. Rev.
177
(
5
),
1857
(
1969
).
9.
Cahill
,
K.
and
Glauber
,
R. J.
, “
Density operators and quasiprobability distributions
,”
Phys. Rev.
177
(
5
),
1882
(
1969
).
10.
Leonhardt
,
U.
,
Essential Quantum Optics: From Quantum Measurements to Black Holes
(
Cambridge University Press
,
Cambridge
,
2010
).
11.
Serafini
,
A.
,
Quantum Continuous Variables: A Primer of Theoretical Methods
, 1st ed. (
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
,
2017
).
12.
Husimi
,
K.
, “
Some formal properties of the density matrix
,”
Proc. Phys.-Math. Soc. Jpn.
22
(
4
),
264
314
(
1940
).
13.
Sudarshan
,
E. C. G.
, “
Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams
,”
Phys. Rev. Lett.
10
,
277
279
(
1963
).
14.
Glauber
,
R. J.
, “
Coherent and incoherent states of the radiation field
,”
Phys. Rev.
131
,
2766
2788
(
1963
).
15.
Terletsky
,
Y. P.
, “
The limiting transition from quantum to classical mechanics
,”
J. Exp. Theor. Phys.
7
(
11
),
1290
1298
(
1937
).
16.
Margenau
,
H.
and
Hill
,
R. N.
, “
Correlation between measurements in quantum theory
,”
Prog. Theor. Phys.
26
(
5
),
722
738
(
1961
).
17.
Johansen
,
L. M.
, “
Nonclassical properties of coherent states
,”
Phys. Lett. A
329
(
3
),
184
187
(
2004
).
18.
Johansen
,
L. M.
and
Luis
,
A.
, “
Nonclassicality in weak measurements
,”
Phys. Rev. A
70
,
052115
(
2004
).
19.
Kirkwood
,
J. G.
, “
Quantum statistics of almost classical assemblies
,”
Phys. Rev.
44
(
1
),
31
37
(
1933
).
20.
Dirac
,
P. A. M.
, “
On the analogy between classical and quantum mechanics
,”
Rev. Mod. Phys.
17
(
2–3
),
195
199
(
1945
).
21.
Arvidsson-Shukur
,
D. R. M.
,
Braasch
,
W. F.
, Jr.
,
De Bievre
,
S.
,
Dressel
,
J.
,
Jordan
,
A. N.
,
Langrenez
,
C.
,
Lostaglio
,
M.
,
Lundeen
,
J. S.
, and
Yunger Halpern
,
N.
, “
Properties and applications of the Kirkwood-Dirac distribution
,” arXiv:2403.18899 (
2024
).
22.
Lostaglio
,
M.
,
Belenchia
,
A.
,
Levy
,
A.
,
Hernández-Gómez
,
S.
,
Fabbri
,
N.
, and
Gherardini
,
S.
, “
Kirkwood-Dirac quasiprobability approach to the statistics of incompatible observables
,”
Quantum
7
,
1128
(
2023
).
23.
Lundeen
,
J. S.
,
Sutherland
,
B.
,
Patel
,
A.
,
Stewart
,
C.
, and
Bamber
,
C.
, “
Direct measurement of the quantum wavefunction
,”
Nature
474
(
7350
),
188
(
2011
).
24.
Lundeen
,
J. S.
and
Bamber
,
C.
, “
Procedure for direct measurement of general quantum states using weak measurement
,”
Phys. Rev. Lett.
108
(
7
),
070402
(
2012
).
25.
Bamber
,
C.
and
Lundeen
,
J. S.
, “
Observing Dirac’s classical phase space analog to the quantum state
,”
Phys. Rev. Lett.
112
(
7
),
070405
(
2014
).
26.
Thekkadath
,
G. S.
,
Giner
,
L.
,
Chalich
,
Y.
,
Horton
,
M. J.
,
Banker
,
J.
, and
Lundeen
,
J. S.
, “
Direct measurement of the density matrix of a quantum system
,”
Phys. Rev. Lett.
117
(
12
),
120401
(
2016
).
27.
Arvidsson-Shukur
,
D. R. M.
,
Yunger Halpern
,
N.
,
Lepage
,
H. V.
,
Lasek
,
A. A.
,
Barnes
,
C. H. W.
, and
Lloyd
,
S.
, “
Quantum advantage in postselected metrology
,”
Nat. Commun.
11
(
1
),
3775
(
2020
).
28.
Jenne
,
J. H.
and
Arvidsson-Shukur
,
D. R. M.
, “
Unbounded and lossless compression of multiparameter quantum information
,”
Phys. Rev. A
106
,
042404
(
2022
).
29.
Lupu-Gladstein
,
N. B.
,
Yilmaz
,
Y. B.
,
Arvidsson-Shukur
,
D. R. M.
,
Brodutch
,
A.
,
Pang
,
A. O. T.
,
Steinberg
,
A. M.
, and
Halpern
,
N. Y.
, “
Negative quasiprobabilities enhance phase estimation in quantum-optics experiment
,”
Phys. Rev. Lett.
128
,
220504
(
2022
).
30.
Yunger Halpern
,
N.
, “
Jarzynski-like equality for the out-of-time-ordered correlator
,”
Phys. Rev. A
95
,
012120
(
2017
).
31.
Yunger Halpern
,
N.
,
Swingle
,
B.
, and
Dressel
,
J.
, “
Quasiprobability behind the out-of-time-ordered correlator
,”
Phys. Rev. A
97
(
4
),
042105
(
2018
).
32.
Yunger Halpern
,
N.
,
Bartolotta
,
A.
, and
Pollack
,
J.
, “
Entropic uncertainty relations for quantum information scrambling
,”
Commun. Phys.
2
(
1
),
92
(
2019
).
33.
González Alonso
,
J. R.
,
Yunger Halpern
,
N.
, and
Dressel
,
J.
, “
Out-of-time-ordered-correlator quasiprobabilities robustly witness scrambling
,”
Phys. Rev. Lett.
122
(
4
),
040404
(
2019
).
34.
Mohseninia
,
R.
,
Alonso
,
J. R. G.
, and
Dressel
,
J.
, “
Optimizing measurement strengths for qubit quasiprobabilities behind out-of-time-ordered correlators
,”
Phys. Rev. A
100
,
062336
(
2019
).
35.
Aharonov
,
Y.
,
Albert
,
D. Z.
, and
Vaidman
,
L.
, “
How the result of a measurement of a component of the spin of a spin-12 particle can turn out to be 100
,”
Phys. Rev. Lett.
60
,
1351
1354
(
1988
).
36.
Duck
,
I. M.
,
Stevenson
,
P. M.
, and
Sudarshan
,
E. C. G.
, “
The sense in which a ‘weak measurement’ of a spin-12 particle’s spin component yields a value 100
,”
Phys. Rev. D
40
,
2112
2117
(
1989
).
37.
Dressel
,
J.
,
Malik
,
M.
,
Miatto
,
F. M.
,
Jordan
,
A. N.
, and
Boyd
,
R. W.
, “
Colloquium: Understanding quantum weak values: Basics and applications
,”
Rev. Mod. Phys.
86
,
307
316
(
2014
).
38.
Pusey
,
M. F.
, “
Anomalous weak values are proofs of contextuality
,”
Phys. Rev. Lett.
113
(
20
),
200401
(
2014
).
39.
Dressel
,
J.
and
Jordan
,
A. N.
, “
Significance of the imaginary part of the weak value
,”
Phys. Rev. A
85
,
012107
(
2012
).
40.
Kunjwal
,
R.
,
Lostaglio
,
M.
, and
Pusey
,
M. F.
, “
Anomalous weak values and contextuality: Robustness, tightness, and imaginary parts
,”
Phys. Rev. A
100
,
042116
(
2019
).
41.
Monroe
,
J. T.
,
Yunger Halpern
,
N.
,
Lee
,
T.
, and
Murch
,
K. W.
, “
Weak measurement of a superconducting qubit reconciles incompatible operators
,”
Phys. Rev. Lett.
126
,
100403
(
2021
).
42.
Wagner
,
R.
,
Schwartzman-Nowik
,
Z.
,
Paiva
,
I. L.
,
Te’eni
,
A.
,
Ruiz-Molero
,
A.
,
Soares Barbosa
,
R.
,
Cohen
,
E.
, and
Galvão
,
E. F.
, “
Quantum circuits for measuring weak values, Kirkwood-Dirac quasiprobability distributions, and state spectra
,”
Quantum Sci. Technol.
9
,
015030
(
2024
).
43.
Levy
,
A.
and
Lostaglio
,
M.
, “
Quasiprobability distribution for heat fluctuations in the quantum regime
,”
PRX Quantum
1
,
010309
(
2020
).
44.
Lostaglio
,
M.
, “
Certifying quantum signatures in thermodynamics and metrology via contextuality of quantum linear response
,”
Phys. Rev. Lett.
125
,
230603
(
2020
).
45.
Hernández-Gómez
,
S.
,
Gherardini
,
S.
,
Belenchia
,
A.
,
Lostaglio
,
M.
,
Levy
,
A.
, and
Fabbri
,
N.
, “
Projective measurements can probe non-classical work extraction and time-correlations
,” arXiv:2207.12960 (
2023
).
46.
Upadhyaya
,
T.
, Jr.
,
Braasch
,
W. F.
,
Landi
,
G. T.
, and
Yunger Halpern
,
N.
, “
What happens to entropy production when conserved quantities fail to commute with each other
,” arXiv:2305.15480 (
2023
).
47.
Suzuki
,
Y.
,
Iinuma
,
M.
, and
Hofmann
,
H. F.
, “
Violation of Leggett–Garg inequalities in quantum measurements with variable resolution and back-action
,”
New J. Phys.
14
(
10
),
103022
(
2012
).
48.
Suzuki
,
Y.
,
Iinuma
,
M.
, and
Hofmann
,
H. F.
, “
Observation of non-classical correlations in sequential measurements of photon polarization
,”
New J. Phys.
18
(
10
),
103045
(
2016
).
49.
Halliwell
,
J. J.
, “
Leggett-Garg inequalities and no-signaling in time: A quasiprobability approach
,”
Phys. Rev. A
93
,
022123
(
2016
).
50.
Griffiths
,
R. B.
, “
Consistent histories and the interpretation of quantum mechanics
,”
J. Stat. Phys.
36
(
1–2
),
219
272
(
1984
).
51.
Hofmann
,
H. F.
, “
Uncertainty limits for quantum metrology obtained from the statistics of weak measurements
,”
Phys. Rev. A
83
(
2
),
022106
(
2011
).
52.
Dressel
,
J.
, “
Weak values as interference phenomena
,”
Phys. Rev. A
91
(
3
),
032116
(
2015
).
53.
De Bièvre
,
S.
, “
Complete incompatibility, support uncertainty, and Kirkwood-Dirac nonclassicality
,”
Phys. Rev. Lett.
127
(
19
),
190404
(
2021
).
54.
De Bièvre
,
S.
, “
Relating incompatibility, noncommutativity, uncertainty, and Kirkwood–Dirac nonclassicality
,”
J. Math. Phys.
64
(
2
),
022202
(
2023
).
55.
Fiorentino
,
V.
and
Weigert
,
S.
, “
Uncertainty relations for the support of quantum states
,”
J. Phys. A: Math. Theor.
55
(
49
),
495305
(
2022
).
56.
Gao
,
N.
,
Li
,
D.
,
Mishra
,
A.
,
Yan
,
J.
,
Simonov
,
K.
, and
Chiribella
,
G.
, “
Measuring incompatibility and clustering quantum observables with a quantum switch
,”
Phys. Rev. Lett.
130
,
170201
(
2023
).
57.
Budiyono
,
A.
and
Dipojono
,
H. K.
, “
Quantifying quantum coherence via Kirkwood-Dirac quasiprobability
,”
Phys. Rev. A
107
,
022408
(
2023
).
58.
Arvidsson-Shukur
,
D. R. M.
,
Drori
,
J. C.
, and
Halpern
,
N. Y.
, “
Conditions tighter than noncommutation needed for nonclassicality
,”
J. Phys. A: Math. Theor.
54
(
28
),
284001
(
2021
).
59.
Hiriart-Urruty
,
J.-B.
and
Lemaréchal
,
C.
,
Fundamentals of Convex Analysis
(
Springer
,
Berlin, Heidelberg
,
2001
).
60.
Mandilara
,
A.
,
Karpov
,
E.
, and
Cerf
,
N. J.
, “
Extending Hudson’s theorem to mixed quantum states
,”
Phys. Rev. A
79
(
6
),
062302
(
2009
).
61.
Genoni
,
M. G.
,
Palma
,
M. L.
,
Tufarelli
,
T.
,
Olivares
,
S.
,
Kim
,
M. S.
, and
Paris
,
M. G. A.
, “
Detecting quantum non-Gaussianity via the Wigner function
,”
Phys. Rev. A
87
(
6
),
062104
(
2013
).
62.
Van Herstraeten
,
Z.
and
Cerf
,
N. J.
, “
Quantum Wigner entropy
,”
Phys. Rev. A
104
(
4
),
042211
(
2021
).
63.
Hertz
,
A.
and
De Bièvre
,
S.
, “
Decoherence and nonclassicality of photon-added and photon-subtracted multimode Gaussian states
,”
Phys. Rev. A
107
(
4
),
043713
(
2023
).
64.
Gross
,
D.
, “
Hudson’s theorem for finite-dimensional quantum systems
,”
J. Math. Phys.
47
(
12
),
122107
(
2006
).
65.
Xu
,
J.
, “
Kirkwood-Dirac classical pure states
,”
Phys. Lett. A
510
,
129529
(
2024
).
66.
Johansen
,
L. M.
, “
Quantum theory of successive projective measurements
,”
Phys. Rev. A
76
(
1
),
012119
(
2007
).
67.
Folland
,
G. B.
,
A Course in Abstract Harmonic Analysis
, 2nd ed.,
Number 29 in Textbooks in Mathematics Series
(
CRC Press/Taylor & Francis
,
Boca Raton
,
2016
).
68.
Takagi
,
R.
and
Zhuang
,
Q.
, “
Convex resource theory of non-Gaussianity
,”
Phys. Rev. A
97
(
6
),
062337
(
2018
).
69.
Sakurai
,
J. J.
,
Modern Quantum Mechanics
(
Addision-Wesley
,
1994
).
70.
Boykin
,
P. O.
,
Sitharam
,
M.
,
Tarifi
,
M.
, and
Wocjan
,
P.
, “
Real mutually unbiased bases
,” arXiv:quant-ph/0502024 (
2005
).
71.
Banica
,
T.
, “
Invitation to Hadamard matrices
,” arXiv:1910.06911 (
2023
).
72.
Salmon
,
W.
,
Thio
,
J. J.
,
Long
,
C. K.
,
Langrenez
,
C.
,
Arvidsson-Shukur
,
D. R. M.
, and
De Bièvre
,
S.
, “
With probability 1, the set of KD-positive states is minimal
,” arXiv:2405.17557 (
2024
).
73.
Langrenez
,
C.
,
Arvidsson-Shukur
,
D. R. M.
, and
De Bièvre
,
S.
, “
Convex roofs witnessing Kirkwood-Dirac nonpositivity
,” arXiv:2407.04558 (
2024
).
You do not currently have access to this content.